【題目】如圖,正方體 的棱長為1, 分別是棱 的中點,過 的平面與棱 分別交于點 .設(shè) ,

①四邊形 一定是菱形;② 平面 ;③四邊形 的面積 在區(qū)間 上具有單調(diào)性;④四棱錐 的體積為定值.
以上結(jié)論正確的個數(shù)是( )
A.4
B.3
C.2
D.1

【答案】B
【解析】因為對面互相平行,所以 四邊形 一定是平行四邊形;因為EF垂直平面BDD1B1,所以EF垂直GH,所以四邊形 一定是菱形;因為AC//EF,所以 平面 ;四邊形 的面積 在區(qū)間 上先減后增;四棱錐 的體積為 ,所以正確的是1,2,4.
所以答案是:B.
【考點精析】根據(jù)題目的已知條件,利用平面的基本性質(zhì)及推論和直線與平面平行的判定的相關(guān)知識可以得到問題的答案,需要掌握如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi);過不在一條直線上的三點,有且只有一個平面;如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線;平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對圓 上任意一點 , 的取值與 無關(guān),則實數(shù) 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取 名同學(xué)(男 人,女 人),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)只能自由選擇其中一道題進行解答.選題情況如下表(單位:人):

幾何題

代數(shù)題

總計

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計

30

20

50

幾何題

代數(shù)題

總計

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計

30

20

50

附表及公式:

(1)能否據(jù)此判斷有 的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的 名女生中,任意抽取兩人,對她們的答題情況進行全程研究,記甲、乙兩位女生被抽到的人數(shù)為 ,求 的分布列和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(Ⅰ)當(dāng) 時,求函數(shù) 處的切線方程;
(Ⅱ)試判斷函數(shù) 零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面為等腰梯形的四棱錐 中, 平面 的中點, , .

(1)證明: 平面
(2)若 ,求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為 , ,若橢圓上存在點 使 成立,則該橢圓的離心率的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 與橢圓 有且只有一個公共點 .
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線 CA,B兩點,且OAOB(O為原點),求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代名著《莊子天下篇》中有一句名言“一尺之棰,日取其半,萬世不竭”,其意思為:一尺的木棍,每天截取一半,永遠(yuǎn)都截不完,現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計算截取7天后所剩木棍的長度(單位:尺),則①②③處可分別填入的是( 。

A.①i≤7?②s=s﹣ ③i=i+1
B.①i≤128?②s=s﹣ ③i=2i
C.①i≤7?②s=s﹣ ③i=i+1
D.①i≤128?②s=s﹣ ③i=2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為的正三角形三個頂點都在球的表面上,且球心到平面的距離為該球半徑的一半,則球的表面積為___________

查看答案和解析>>

同步練習(xí)冊答案