如圖,,過曲線上一點(diǎn)的切線,與曲線也相切于點(diǎn),記點(diǎn)的橫坐標(biāo)為。

(1)用表示切線的方程;
(2)用表示的值和點(diǎn)的坐標(biāo);
(3)當(dāng)實(shí)數(shù)取何值時(shí),
并求此時(shí)所在直線的方程。
,
(1)切線,即,…………2分
代入,化簡并整理得,(*)

!5分
,代入(*)式得,與已知矛盾;…………6分
,代入(*)式得滿足條件,

綜上,,點(diǎn)的坐標(biāo)為。…………8分
(2)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823142749139590.gif" style="vertical-align:middle;" />,,…………10分
,則,即,此時(shí),
故當(dāng)實(shí)數(shù)時(shí),。                …………12分
此時(shí),,
易得,,…………14分
此時(shí)所在直線的方程為!15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,左、右焦點(diǎn)分別為,定點(diǎn)P,點(diǎn)在線段的中垂線上.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于M、N兩點(diǎn),直線的傾斜角分別為,求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間可以確定一個(gè)平面的條件是       (   )
A.兩條直線B.一個(gè)三角形C.一個(gè)點(diǎn)與直線D.三個(gè)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
設(shè)橢圓的離心率,右焦點(diǎn)到直線的距離為坐標(biāo)原點(diǎn).
(I)求橢圓的方程;
(II)過點(diǎn)作兩條互相垂直的射線,與橢圓分別交于兩點(diǎn),證明點(diǎn)到直
的距離為定值,并求弦長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)
設(shè)、為坐標(biāo)平面上的點(diǎn),直線為坐標(biāo)原點(diǎn))與拋物線交于點(diǎn)(異于).
(1)      若對(duì)任意,點(diǎn)在拋物線上,試問當(dāng)為何值時(shí),點(diǎn)在某一圓上,并求出該圓方程
(2)      若點(diǎn)在橢圓上,試問:點(diǎn)能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)      對(duì)(1)中點(diǎn)所在圓方程,設(shè)是圓上兩點(diǎn),且滿足,試問:是否存在一個(gè)定圓,使直線恒與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(3,),半徑為1,點(diǎn)Q在圓C上運(yùn)動(dòng),O為極點(diǎn)。
(1)求圓C的極坐標(biāo)方程;
(2)若點(diǎn)在直線OQ上運(yùn)動(dòng),且滿足,求動(dòng)點(diǎn)P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知為橢圓的兩個(gè)焦點(diǎn),過的直線交橢圓于兩點(diǎn),若,則=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知點(diǎn)A(15,0),點(diǎn)P是圓上的動(dòng)點(diǎn),M為線段PA的中點(diǎn),當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求動(dòng)點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,由x軸的正半軸、y軸的正半軸、曲線以及該曲線在處的切線所圍成圖形的面積是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案