分析 以底面正方形ABCD中心O為原點,以O(shè)A為x軸,OB為y軸,OV為z軸,建立空間直角坐標系,利用向量法能求出異面直線BE與DF所成角的正切值.
解答 解:以底面正方形ABCD中心O為原點,以O(shè)A為x軸,OB為y軸,OV為z軸,
建立空間直角坐標系,
則A($\sqrt{2}$,0,0),B(0,$\sqrt{2}$,0),C(-$\sqrt{2}$,0,0),D(0,-$\sqrt{2}$,0),
V(0,0,4),E($\frac{\sqrt{2}}{2}$,0,2),F(xiàn)(-$\frac{\sqrt{2}}{2}$,0,2),
$\overrightarrow{BE}$=($\frac{\sqrt{2}}{2},-\sqrt{2},2$),$\overrightarrow{DF}$=(-$\frac{\sqrt{2}}{2}$,$\sqrt{2},2$),
設(shè)向量BE和DF成角為θ,
cosθ=|cos<$\overrightarrow{BE},\overrightarrow{DF}$>|=|$\frac{\overrightarrow{BE}•\overrightarrow{DF}}{|\overrightarrow{BE}|•|\overrightarrow{DF}|}$|=|$\frac{-\frac{1}{2}-2+4}{\sqrt{\frac{1}{2}+2+4}•\sqrt{\frac{1}{2}+2+4}}$|=$\frac{3}{13}$,
sinθ=$\sqrt{1-(\frac{3}{13})^{2}}$=$\frac{4\sqrt{10}}{13}$,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{4\sqrt{10}}{3}$.
∴異面直線BE與DF所成角的正切值為$\frac{4\sqrt{10}}{13}$.
點評 本題考查異面直線所成角的正切值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1] | B. | [-1,0] | C. | [1,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-5,1) | B. | (-∞,-5)∪(1,+∞) | C. | (-1,5) | D. | (-∞,-1)∪(5,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,3) | B. | (1,3) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 65 | B. | 56 | C. | P65 | D. | C65 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com