【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉一周形成一旋轉體,求此旋轉體的表面積和體積.

【答案】表面積為π,體積為π.

【解析】

由已知三角形ABC為直角三角形,斜邊AB為軸旋轉一周,所得旋轉體是AB邊的高CO為底面半徑的兩個圓錐組成的組合體,計算出底面半徑及兩個圓錐高的和,代入圓錐體積公式,即可求出旋轉體的體積;又由該幾何體的表面積是兩個圓錐的側面積之和,分別計算出兩個圓錐的母線長,代入圓錐側面積公式,即可得到答案.

過C點作CD⊥AB,垂足為D.△ABC以AB所在直線為軸旋轉一周,所得到的旋轉體是兩個底面重合的圓錐,如圖所示,

這兩個圓錐高的和為AB=5,

底面半徑DC=,

故S=π·DC·(BC+AC)=π.

V=π·DC2·AD+π·DC2·BD=π·DC2(AD+BD)=π.

即所得旋轉體的表面積為π,體積為π.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點,兩個焦點分別為.

1)求橢圓的方程;

2)過的直線與橢圓相交于兩點,若的內(nèi)切圓半徑為,求以為圓心且與直線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年1月6日北京時間上午11時30分,朝鮮中央電視臺宣布“成功進行了氫彈試驗”,再次震動世界,此事件也引起了我國公民熱議,其中丹東市(丹東市和朝鮮隔江)某聊天群有300名網(wǎng)友,烏魯木齊市某微信群有200名網(wǎng)友,為了解不同地區(qū)我國公民對“氫彈試驗”事件的關注程度,現(xiàn)采用分層抽樣的方法,從中抽取了100名網(wǎng)友,先分別統(tǒng)計了他們在某時段發(fā)表的信息條數(shù),再將兩地網(wǎng)友發(fā)表的信息條數(shù)分成5組:,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)求丹東市網(wǎng)友的平均留言條數(shù)(保留整數(shù));

(2)為了進一步開展調查,從樣本中留言條數(shù)不足50條的網(wǎng)友中隨機抽取2人,求至少抽到一名烏魯木齊市網(wǎng)友的概率;

(3)規(guī)定“留言條數(shù)”不少于70條為“強烈關注”.

①請你根據(jù)已知條件完成下列的列聯(lián)表:

強烈關注

非強烈關注

合計

丹東市

烏魯木齊市

合計

②判斷是否有的把握認為“強烈關注”與網(wǎng)友所在的地區(qū)有關?

附:臨界值表及參考公式:

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“活水圍網(wǎng)”養(yǎng)魚技術具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當時,的值為2千克/年;當時,的一次函數(shù);當時,因缺氧等原因,的值為0千克/年.

(1)當時,求關于的函數(shù)表達式.

(2)當養(yǎng)殖密度為多少時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海洋藍洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑,兩點間的距離,現(xiàn)在珊瑚群島上取兩點,,測得,,,,則,兩點的距離為___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,且過點

求橢圓的標準方程;

設直線l與橢圓在第一象限的交點為M,過點F且斜率為的直線與l交于點N,若的面積之比為3為坐標原點,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如圖的列聯(lián)表. 已知在全部105人中隨機抽取一人為優(yōu)秀的概率為.

(1)請完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按的可靠性要求,能否認為“成績與班級有關系”;

(3)若按下面的方法從甲班優(yōu)秀的學生抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到8或9號的概率.

參考公式和數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)求上的單調性及極值;

(2)若,對任意的,不等式都在上有解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案