【題目】已知函數(shù) (是自然對(duì)數(shù)的底數(shù)), .
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中為的導(dǎo)函數(shù),證明:對(duì)任意.
【答案】(Ⅰ)(Ⅱ)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為. (Ⅲ)見(jiàn)解析.
【解析】試題分析:(1)求出的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),即可得到所求切線的方程;
(2)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù),求的單調(diào)區(qū)間;
(3), .由,確定當(dāng)時(shí), .當(dāng)時(shí), ,即可證明結(jié)論.
試題解析:
(Ⅰ)的定義域?yàn)?/span>,
由,得,∴點(diǎn)A的坐標(biāo)為.
,所以,
所以曲線在點(diǎn)A處的切線方程為
(Ⅱ),所以
令得,因此當(dāng)時(shí), 單調(diào)遞增;
當(dāng)時(shí), 單調(diào)遞減.
所以的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為.
(Ⅲ)證明:因?yàn)?/span>,所以, 等價(jià)于在時(shí)恒成立,
由(Ⅱ)知,當(dāng)時(shí), 的最大值,
故,
因?yàn)?/span>時(shí),
所以,
因此任意, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣污染,又稱為大氣污染,是指由于人類活動(dòng)或自然過(guò)程引起某些物質(zhì)進(jìn)入大氣中,呈現(xiàn)出足夠的濃度,達(dá)到足夠的時(shí)間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來(lái)越關(guān)注環(huán)境保護(hù)問(wèn)題.當(dāng)空氣污染指數(shù)(單位:μg/m3)為0~50時(shí),空氣質(zhì)量級(jí)別為一級(jí),空氣質(zhì)量狀況屬于優(yōu);當(dāng)空氣污染指數(shù)為50~100時(shí),空氣質(zhì)量級(jí)別為二級(jí),空氣質(zhì)量狀況屬于良;當(dāng)空氣污染指數(shù)為100~150時(shí),空氣質(zhì)量級(jí)別為三級(jí),空氣質(zhì)量狀況屬于輕度污染;當(dāng)空氣污染指數(shù)為150~200時(shí),空氣質(zhì)量級(jí)別為四級(jí),空氣質(zhì)量狀況屬于中度污染;當(dāng)空氣污染指數(shù)為200~300時(shí),空氣質(zhì)量級(jí)別為五級(jí),空氣質(zhì)量狀況屬于重度污染;當(dāng)空氣污染指數(shù)為300以上時(shí),空氣質(zhì)量級(jí)別為六級(jí),空氣質(zhì)量狀況屬于嚴(yán)重污染.2017年1月某日某省x個(gè)監(jiān)測(cè)點(diǎn)數(shù)據(jù)統(tǒng)計(jì)如下:
空氣污染指數(shù) (單位:μg/m3) | ||||
監(jiān)測(cè)點(diǎn)個(gè)數(shù) | 15 | 40 | y | 10 |
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(2)若A市共有5個(gè)監(jiān)測(cè)點(diǎn),其中有3個(gè)監(jiān)測(cè)點(diǎn)為輕度污染,2個(gè)監(jiān)測(cè)點(diǎn)為良.從中任意選取2個(gè)監(jiān)測(cè)點(diǎn),事件A“其中至少有一個(gè)為良”發(fā)生的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中, , , 為的中點(diǎn).
(1)求證: ;
(2)設(shè)平面平面, , ,求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能手機(jī)的發(fā)展,微信越來(lái)越成為人們交流的一種方式,某機(jī)構(gòu)對(duì)使用微信交流的態(tài)度進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡的頻數(shù)分布及對(duì)使用微信交流贊成人數(shù)如表:
年齡(歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為年齡45歲為分界點(diǎn)對(duì)使用微信交流的態(tài)度有差異;
年齡不低于45歲的人 | 年齡低于45歲的人 | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(2)若對(duì)年齡分別在, 的被調(diào)查人中各抽取一人進(jìn)行追蹤調(diào)查,求選中的2人中至少有一人贊成使用微信交流的概率.
參考公式: ,其中
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某物體一天中的溫度是時(shí)間的函數(shù),已知,其中溫度的單位是,時(shí)間的單位是小時(shí),規(guī)定中午12:00相應(yīng)的,中午12:00以后相應(yīng)的取正數(shù),中午12:00以前相應(yīng)的取負(fù)數(shù)(例如早上8:00相應(yīng)的,下午16:00相應(yīng)的),若測(cè)得該物體在中午12:00的溫度為,在下午13:00的溫度為,且已知該物體的溫度在早上8:00與下午16:00有相同的變化率.
(1)求該物體的溫度關(guān)于時(shí)間的函數(shù)關(guān)系式;
(2)該物體在上午10:00至下午14:00這段時(shí)間中(包括端點(diǎn))何時(shí)溫度最高?最高溫度是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查高一新生中女生的體重情況,校衛(wèi)生室隨機(jī)選20名女生作為樣本,測(cè)量她們的體重(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間, , , 進(jìn)行分組,得到頻率分布直方圖如圖所示,已知樣本中體重在區(qū)間上的女生數(shù)與體重在區(qū)間上的女生數(shù)之比為.
(1)求的值;
(2)從樣本中體重在區(qū)間上的女生中隨機(jī)抽取兩人,求體重在區(qū)間上的女生至少有一人被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中為了解高中學(xué)生的性別和喜愛(ài)打籃球是否有關(guān),對(duì)50名高中學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜愛(ài)打籃球 | 不喜歡打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) |
已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(2)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) (為常數(shù),是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在內(nèi)存在兩個(gè)極值點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com