【題目】已知四棱錐中,底面,,底面是邊長為的正方形,的中點(diǎn)

1)求點(diǎn)到平面的距離;

2)求異面直線所成角的余弦值.

【答案】1;(2

【解析】

1)根據(jù)邊長的關(guān)系和利用勾股定理的逆定理可得,設(shè)點(diǎn)到平面的距離為,利用等體積法和棱錐的體積公式,即可求點(diǎn)到平面的距離;

2)設(shè)的中點(diǎn)為,連接、,根據(jù)三角形中位線的性質(zhì)得出,得出是異面直線所成角或其補(bǔ)角,利用余弦定理求出,從而得出結(jié)果.

解:(1)由題可知,底面,,

且底面是邊長為的正方形,

由于

,

,

中,有,則

所以,

設(shè)點(diǎn)到平面的距離為,

由于,則,

,

解得:

即點(diǎn)到平面的距離為.

2)設(shè)的中點(diǎn)為,連接、,

中點(diǎn),∴,

是異面直線所成角或其補(bǔ)角,

由于底面,底面,

,

中,,

,,

中,由余弦定理得:

,

又由于異面直線夾角范圍為,

由此可得異面直線所成角為的補(bǔ)角,

所以異面直線所成角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某學(xué)生在4月份開始進(jìn)人沖刺復(fù)習(xí)至高考前的5次大型聯(lián)考數(shù)學(xué)成績(分);

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)①請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

②若在4月份開始進(jìn)入沖刺復(fù)習(xí)前,該生的數(shù)學(xué)分?jǐn)?shù)最好為116分,并以此作為初始分?jǐn)?shù),利用上述回歸方程預(yù)測高考的數(shù)學(xué)成績,并以預(yù)測高考成績作為最終成績,求該生4月份后復(fù)習(xí)提高率.(復(fù)習(xí)提高率=,分?jǐn)?shù)取整數(shù))

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖1是一個(gè)水平擺放的小正方體木塊,圖2,圖3是由這樣的小正方體木塊疊放而成的,按照這樣的規(guī)律放下去,至第七個(gè)疊放的圖形中,小正方體木塊總數(shù)就是( )

A. 25B. 66C. 91D. 120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知有6名男醫(yī)生,4名女醫(yī)生.

(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個(gè)不同地區(qū)去巡回醫(yī)療,一個(gè)地區(qū)去一名教師,共有多少種分派方法?

(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,共有多少種不同的分法?若將這兩組醫(yī)生分派到兩地去,又有多少種分派方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x∈R),a為正實(shí)數(shù).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若對(duì),不等式恒成立,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年的流感來得要比往年更猛烈一些據(jù)四川電視臺(tái)“新聞現(xiàn)場”播報(bào),近日四川省人民醫(yī)院一天的最高接診量超過了一萬四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因?yàn)楦忻皝淼尼t(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年16月每月20日的晝夜溫差情況與患感冒就診的人數(shù),得到如下資料:

日期

120

220

320

420

520

620

晝夜溫差

10

11

13

12

8

6

就診人數(shù)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,其中是復(fù)數(shù),若集合中任意兩數(shù)之積及任意一個(gè)數(shù)的平方仍是中的元素,則集合___________________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.

1)求橢圓的方程及離心率的值;

2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺(tái)ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

(1)求證:BF⊥平面ACFD;

(2)求二面角B-AD-F的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案