1.函數(shù)f(x)=sinx-cosx,x∈[0,$\frac{π}{2}$]的最小值為( 。
A.-2B.-$\sqrt{3}$C.-$\sqrt{2}$D.-1

分析 利用解析式的形式,通過兩角差的正弦公式把它變成一個角的正弦值,從而求得最小值.

解答 解:f(x)=sinx-cosx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinx-$\frac{\sqrt{2}}{2}$cosx)=$\sqrt{2}$sin(x-$\frac{π}{4}$),x∈[0,$\frac{π}{2}$],則x-$\frac{π}{4}$∈$[-\frac{π}{4},\frac{π}{4}]$,
x=0時,函數(shù)取得最小值,
∴f(x)的最小值是-1.
故選:D.

點評 考查兩角差的正弦公式以及正弦函數(shù)的最小值是-1.注意x的范圍是易錯點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.“a≠2”是直線ax+2y=3與直線x+(a-1)y=1相交的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知A,B分別為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右頂點,P是C上一點,且直線AP,BP的斜率之積為2,則C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=log2(2|x+1|+|2x+m|-m)
(I)當m=6時,求函數(shù)f(x)的定義域;
(Ⅱ)當函數(shù)f(x)的值域為R時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.定義數(shù)列{xn}:x1=$\root{3}{3}$,x2=($\root{3}{3}$)${\;}^{\root{3}{3}}$,…,xn=(xn-1)${\;}^{\root{3}{3}}$(n∈N,且n>1),則使xn是整數(shù)的n的最小值是( 。
A.2B.3C.4D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow$=(3,-4),若$\overrightarrow{a}$∥$\overrightarrow$,則tan2θ=±$\frac{24}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{ax+b}{1+{x}^{2}}$是定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)證明f(x)在(-1,1)上是增函數(shù);
(Ⅲ)若f(x)-3t+1>0在(-1,0)上恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直線y=-$\frac{1}{2}$是函數(shù)f(x)的一條切線,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若f(x)=(a-3)x${\;}^{{a}^{2}-3a-2}$既是冪函數(shù)又是二次函數(shù),則a的值是( 。
A.-1B.4C.-1或4D.2

查看答案和解析>>

同步練習冊答案