【題目】如圖,在三棱錐P-ABC中,,平面平面ABC,點(diǎn)D在線段BC上,且,EF分別為線段PC,AB的中點(diǎn),點(diǎn)GPD上的動(dòng)點(diǎn).

1)證明:.

2)當(dāng)平面PAC時(shí),求直線PA與平面EFG所成角的正弦值.

【答案】1)證明見解析;(2

【解析】

(1) 連接PF,先證明平面PDF,再證明即可.

(2) F為坐標(biāo)原點(diǎn),以FH.FA,FP所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系F-xyz,再根據(jù)空間向量中直線與平面夾角的方法求解即可.

1)證明:連接PF,因?yàn)?/span>,FAB的中點(diǎn),

所以.

又平面平面ABC,平面平面,

所以平面ABC,從而.

設(shè)BC的中點(diǎn)H,因?yàn)?/span>,DF的中位線,

所以.

同理可知,所以

所以平面PDF

因?yàn)?/span>平面PDF,所以

2)解:連接GH,因?yàn)?/span>FH的中位線,所以.

因?yàn)?/span>平面PAC,平面PAC,所以平面PAC.

又因?yàn)?/span>平面PAC, ,所以平面平面PAC

因?yàn)槠矫?/span>PBC分別與平面FGHPAC相交于GH,PC,

所以,且

易知FH,FA,FP兩兩垂直,以F為坐標(biāo)原點(diǎn),以FH.FA,FP所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系F-xyz,如圖所示,

.

設(shè)平面EFG的法向量為,

,取,得

,設(shè)PA與平面EFG所成角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的空間幾何體中,是等腰直角三角形,,四邊形為直角梯形,中點(diǎn).

)證明:平面;

)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),.已知函數(shù),.

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)已知函數(shù)的圖象在公共點(diǎn)(x0,y0)處有相同的切線,

(i)求證:處的導(dǎo)數(shù)等于0;

(ii)若關(guān)于x的不等式在區(qū)間上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行下面的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種籠具由內(nèi),外兩層組成,無(wú)下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長(zhǎng)相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長(zhǎng)為,高為,圓錐的母線長(zhǎng)為.

1)求這種籠具的體積(結(jié)果精確到0.1);

2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)籠具,該材料的造價(jià)為每平方米8元,共需多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從四所高校中選2.

(Ⅰ)求甲、乙、丙三名同學(xué)都選高校的概率;

(Ⅱ)若已知甲同學(xué)特別喜歡高校,他必選校,另在三校中再隨機(jī)選1所;而同學(xué)乙和丙對(duì)四所高校沒(méi)有偏愛,因此他們每人在四所高校中隨機(jī)選2.

(。┣蠹淄瑢W(xué)選高校且乙、丙都未選高校的概率;

(ⅱ)記為甲、乙、丙三名同學(xué)中選校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列命題中,正確的命題有________(填寫正確的序號(hào))

①若,則的最小值是6;

②如果不等式的解集是,那么恒成立;

③設(shè)x,,且,則的最小值是;

④對(duì)于任意,恒成立,則t的取值范圍是;

⑤“”是“復(fù)數(shù)()是純虛數(shù)”的必要非充分條件;

⑥若,,,則必有;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,底面,,,且,. 點(diǎn)E在棱AB上,平面與棱相交于點(diǎn)F.

)求證:平面;

)求證:平面

)寫出三棱錐體積的取值范圍. (結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量=1,2,···,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.








46.6

56.3

6.8

289.8

1.6

1469

108.8

表中,=

)根據(jù)散點(diǎn)圖判斷,y=a+bxy=c+d哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)

)根據(jù)()的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

)已知這種產(chǎn)品的年利率zxy的關(guān)系為z=0.2y-x.根據(jù)()的結(jié)果回答下列問(wèn)題:

)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

)年宣傳費(fèi)x為何值時(shí),年利率的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計(jì)分別為:

查看答案和解析>>

同步練習(xí)冊(cè)答案