A. | (1,$\frac{3}{2}$) | B. | (1,2) | C. | ($\frac{3}{2}$,+∞) | D. | (2,+∞) |
分析 由右頂點M在以AB為直徑的圓的外,得|MF|>|AF|,將其轉化為關于a、b、c的式子,再結合平方關系和離心率的公式,化簡整理得e2-e-2<0,解之即可得到此雙曲線的離心率e的取值范圍.
解答 解:由于雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),則直線AB方程為:x=-c,
因此,設A(-c,y0),B(-c,-y0),
∴$\frac{{c}^{2}}{{a}^{2}}-\frac{{{y}_{0}}^{2}}{^{2}}$=1,解之得y0=$\frac{^{2}}{a}$,得|AF|=$\frac{^{2}}{a}$,
∵雙曲線的右頂點M(a,0)在以AB為直徑的圓外,
∴|MF|>|AF|,即a+c>$\frac{^{2}}{a}$,
將b2=c2-a2,并化簡整理,得2a2+ac-c2>0
兩邊都除以a2,整理得e2-e-2<0,
∵e>1,∴解之得1<e<2.
故選:B.
點評 本題給出以雙曲線通徑為直徑的圓,當左焦點在此圓內(nèi)時求雙曲線的離心率,著重考查了雙曲線的標準方程和簡單幾何性質(zhì)等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{5}{2}$,$\frac{23}{6}$] | B. | ($\frac{5}{2}$,$\frac{23}{6}$) | C. | ($\frac{3}{2}$,$\frac{19}{6}$) | D. | ($\frac{3}{2}$,$\frac{19}{6}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com