12.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{|2x-y|≤2}\\{|2x+y|≤2}\end{array}\right.$,則z=2x+y的最小值是$\frac{1}{4}$.

分析 由約束條件作出可行域,令t=x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入求得t的最小值,則z=2x+y的最小值可求.

解答 解:由約束條件$\left\{\begin{array}{l}{|2x-y|≤2}\\{|2x+y|≤2}\end{array}\right.$作出可行域如圖,

令t=x+y,化為y=-x+t,由圖可知,當(dāng)直線y=-x+t過A(0,-2)時(shí),直線在y軸上的截距最小,t有最小值為-2.
∴z=2x+y的最小值是${2}^{-2}=\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合Rn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2).對于A=(a1,a2,…,an)∈Rn,B=(b1,b2,…,bn)∈Rn,定義A與B之間的距離為d(A,B)=|a1-b1|+|a2-b2|+…|an-bn|=$\sum_{i=1}^n{|{{a_i}-{b_i}}|}$.
(Ⅰ)寫出R2中的所有元素,并求兩元素間的距離的最大值;
(Ⅱ)若集合M滿足:M⊆R3,且任意兩元素間的距離均為2,求集合M中元素個(gè)數(shù)的最大值并寫出此時(shí)的集合M;
(Ⅲ)設(shè)集合P⊆Rn,P中有m(m≥2)個(gè)元素,記P中所有兩元素間的距離的平均值為$\overline d(P)$,證明$\overline d(P)≤\frac{mn}{2(m-1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a=2-1.2,b=log36,c=log510,則a,b,c的大小關(guān)系是( 。
A.c<b<aB.c<a<bC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.中新網(wǎng)2016年12月19日電  根據(jù)預(yù)報(bào),今天開始霧霾范圍將進(jìn)一步擴(kuò)大,19日夜間至20日,霧霾最嚴(yán)重的時(shí)段部分地區(qū)PM2.5濃度峰值會(huì)超過500微克/立方米,而此輪霧霾最嚴(yán)重的時(shí)候,將有包括京津翼、山西、陜西、河南等11個(gè)省市在內(nèi)的地區(qū)被霧霾籠罩,PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo),某地區(qū)在2016年12月19日至28日每天的PM2.5監(jiān)測數(shù)據(jù)的莖葉圖如圖所示:
(1)求出這些數(shù)據(jù)的中位數(shù)與極差;
(2)從所給的空氣質(zhì)量不超標(biāo)的7天的數(shù)據(jù)中任意抽取2天的數(shù)據(jù),求這2天中恰好有1天空氣質(zhì)量為一級,另一天空氣質(zhì)量為二級的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)D、E、F分別為△ABC三邊BC、CA、AB的中點(diǎn),則$\overrightarrow{DA}$+$\overrightarrow{EB}$+$\overrightarrow{FC}$=( 。
A.$\frac{1}{2}$$\overrightarrow{DA}$B.$\frac{1}{3}$$\overrightarrow{DA}$C.$\frac{1}{4}$$\overrightarrow{DA}$D.$\overrightarrow{0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=alnx+$\frac{1-{x}^{2}}{{x}^{2}}$,a∈R.
(1)若f(x)的最小值為0,求實(shí)數(shù)a的值;
(2)證明:當(dāng)a=2時(shí),f(x)≤f′(x)在x∈[1,2]上恒成立,其中f′(x)表示f(x)的導(dǎo)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=($\frac{2}{1+{e}^{x}}$-1)sinx的圖象的大致形狀是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過其左焦點(diǎn)F作x軸的垂線,交雙曲線于A,B兩點(diǎn),若雙曲線的右頂點(diǎn)在以AB為直徑的圓外,則雙曲線離心率的取值范圍是( 。
A.(1,$\frac{3}{2}$)B.(1,2)C.($\frac{3}{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)=1.

查看答案和解析>>

同步練習(xí)冊答案