19.過點(diǎn)M(1,2)且在y軸上的截距是12的直線方程是10x+y-12=0.

分析 設(shè)直線的方程為:$\frac{x}{a}+\frac{y}{12}$=1,把點(diǎn)M(1,2)代入解得a.化簡(jiǎn)整理即可得出.

解答 解:設(shè)直線的方程為:$\frac{x}{a}+\frac{y}{12}$=1,
把點(diǎn)M(1,2)代入可得:$\frac{1}{a}+\frac{2}{12}$=1,解得a=$\frac{6}{5}$.
∴直線方程為:$\frac{x}{\frac{6}{5}}$+$\frac{y}{12}$=1,化為10x+y-12=0.
故答案為:10x+y-12=0.

點(diǎn)評(píng) 本題考查了直線的截距式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=-x2+3x-a,g(x)=2x-x2,若f[g(x)]≥0對(duì)x∈[0,1]恒成立,則實(shí)數(shù)a的范圍是( 。
A.(-∞,2]B.(-∞,e]C.(-∞,ln2]D.[0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知命題p:m∈R且m+1≤0,命題q:?x∈R,x2+mx+1>0恒成立,若p∧q為假命題且p∨q為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)的定義域?yàn)镈,函數(shù)g(x)的定義域?yàn)镋.規(guī)定:函數(shù)$h(x)=\left\{\begin{array}{l}f(x)g(x),x∈D且x∈E\\ f(x),x∈D且x∉E\\ g(x),x∈E且x∉D\end{array}\right.$
(Ⅰ)若函數(shù)$f(x)=\frac{1}{x-1},g(x)={x^2}$,寫出函數(shù)h(x)的解析式;
(Ⅱ)判斷問題(Ⅰ)中函數(shù)h(x)在(1,+∞)上的單調(diào)性;
(Ⅲ)若g(x)=f(x+α),其中α是常數(shù),且α∈(0,π),請(qǐng)?jiān)O(shè)計(jì)一個(gè)定義域?yàn)镽的函數(shù)y=f(x),及一個(gè)α的值,使得h(x)=cos4x,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=ln(-x2-2x+8)的單調(diào)遞減區(qū)間是( 。
A.(-∞,-1)B.(-1,2)C.(-4,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知Sn為等差數(shù)列{an}的前n項(xiàng)和且a1=3,Sn=n2+Bn+C(其中B,C為常數(shù)).
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{4}{({a}_{n}-1)({a}_{n+1}-1)}$,Tn為數(shù)列{bn}的前n項(xiàng)和.求證:$\frac{1}{2}$≤Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中的說法正確的是(  )
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.“x=-1”是“x2+5x-6=0”的必要不充分條件
C.命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1>0”
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)$\frac{{|{4+3i}|}}{3-4i}$(i為虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是同一平面內(nèi)的單位向量,且$\overrightarrow{a}$⊥$\overrightarrow$,則($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-2$\overrightarrow$)的最大值為1$+\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案