【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點.求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
試題分析:(1)線面平行的判定關鍵在證相應線線平行,線線平行的證明或尋求需要結合平面幾何的知識,如中位線平行于底面,因為本題中M為PC中點,所以應取BD的中點作為解題突破口;(2)線線垂直的證明一般需要經(jīng)過多次線線垂直與線面垂直的轉化,而對于面面垂直,基本是單向轉化,即作為條件,就將其轉化為線面垂直;作為結論,只需尋求線面垂直.如本題中面PCD與面ABCD垂直,就轉化為BC平面PCD,到此所求問題轉化為:已知線面垂直,要求證線線垂直.在線線垂直與線面垂直的轉化過程中,要注意充分應用平面幾何中的垂直條件,如矩形鄰邊相互垂直.
試題解析:證明:(1)連結AC交BD于點O,連結OM. 2分
因為M為PC中點,O為AC中點,
所以MO//PA. 4分
因為MO平面MDB,PA平面MDB,
所以PA//平面MDB. 7分
(2)因為平面PCD平面ABCD,
平面PCD平面ABCD =CD,
BC平面ABCD ,BCCD,
所以BC平面PCD. 12分
因為PD平面PCD,
所以BCPD 14分
科目:高中數(shù)學 來源: 題型:
【題目】已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸, )表示下一個銷售季度的市場需求量, (單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(Ⅰ)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。
(Ⅱ)根據(jù)直方圖估計利潤不少于57萬元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交通指數(shù)是指交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個級別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴重擁堵.在晚高峰時段(),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.
(1)求出輕度擁堵、中度擁堵、嚴重擁堵的路段的個數(shù);
(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴重擁堵的路段中共抽取6個路段,求依次抽取的三個級別路段的個數(shù);
(3)從(2)中抽取的6個路段中任取2個,求至少有1個路段為輕度擁堵的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量(單位:千萬件)的影響,統(tǒng)計了近年投入的年研發(fā)費用與年銷售量的數(shù)據(jù),得到散點圖如圖所示.
(1)利用散點圖判斷和(其中均為大于的常數(shù))哪一個更適合作為年銷售量和年研發(fā)費用的回歸方程類型(只要給出判斷即可,不必說明理由)
(2)對數(shù)據(jù)作出如下處理,令,得到相關統(tǒng)計量的值如下表:根據(jù)第(1)問的判斷結果及表中數(shù)據(jù),求關于的回歸方程;
| |||
15 | 15 | 28.25 | 56.5 |
(3)已知企業(yè)年利潤(單位:千萬元)與的關系為(其中),根據(jù)第(2)問的結果判斷,要使得該企業(yè)下一年的年利潤最大,預計下一年應投入多少研發(fā)費用?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的
中點.
(1) 求證: AC⊥BC1
(2) 求證:AC1∥平面CDB1
(3) 求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(2)若存在實數(shù)使得關于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,、分別為橢圓的左、右焦點.設不經(jīng)過焦點的直線與橢圓交于兩個不同的點、,焦點到直線的距離為.若直線、、的斜率依次成等差數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}為等差數(shù)列,數(shù)列{an},{bn}滿足a1=b1=2,b2=6,且an+1bn=anbn+bn+1.
(1)求{an}的通項公式;
(2)求{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,兩個點列 和 滿足:① ;②
(1)求點和的坐標;
(2)求向量的坐標;
(3)對于正整數(shù)k,用表示無窮數(shù)列 中從第k+1項開始的各項之和,用表示無窮數(shù)列 中從第k項開始的各項之和,即, 若存在正整數(shù)k和p,使得,求k,p的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com