分析 (I)利用中點(diǎn)坐標(biāo)公式可得P,再利用向量夾角公式即可得出.
(II)設(shè)P(x,y),由點(diǎn)P在線段AB的延長(zhǎng)線上,且$|{\overrightarrow{AP}}|=\frac{3}{2}|{\overrightarrow{PB}}|$,可得$\overrightarrow{AP}=\frac{3}{2}\overrightarrow{BP}$,即$({x-4,y-3})=\frac{3}{2}({x-2,y+1})$,利用向量相等即可得出.
解答 解:(Ⅰ)∵點(diǎn)P是線段AB的中點(diǎn),∴點(diǎn)P的坐標(biāo)為$({\frac{2+4}{2},\frac{3-1}{2}})$,即(3,1),
則$\overrightarrow{OP}=({3,1})$.
∴$cosθ=\frac{{\overrightarrow{OA}•\overrightarrow{OP}}}{{|{\overrightarrow{OA}}|•|{\overrightarrow{OP}}|}}$=$\frac{4×3+3×1}{{\sqrt{{4^2}+{3^2}}×\sqrt{{3^2}+{1^2}}}}$=$\frac{{3\sqrt{10}}}{10}$.
(Ⅱ)設(shè)P(x,y),由點(diǎn)P在線段AB的延長(zhǎng)線上,且$|{\overrightarrow{AP}}|=\frac{3}{2}|{\overrightarrow{PB}}|$,
得$\overrightarrow{AP}=\frac{3}{2}\overrightarrow{BP}$,∴$({x-4,y-3})=\frac{3}{2}({x-2,y+1})$,
即$\left\{\begin{array}{l}2x-8=3x-6\\ 2y-6=3y+3\end{array}\right.$,
解得:$\left\{\begin{array}{l}x=-2\\ y=-9\end{array}\right.$,
∴點(diǎn)P的坐標(biāo)為(-2,-9).
點(diǎn)評(píng) 本題考查了向量的線性運(yùn)算及其坐標(biāo)運(yùn)算性質(zhì)、向量夾角公式、數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{6}$ | D. | $\frac{3\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{10}{11}$ | B. | $\frac{5}{6}$ | C. | $\frac{5}{11}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i+2 | B. | i-2 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com