7.已知函數(shù)f(x)=x2-2x+m,在區(qū)間[-2,4]上隨機取一個實數(shù)x,若事件“f(x)<0”發(fā)生的概率為$\frac{2}{3}$,則m=-3.

分析 本題符合幾何概型,只要分別求出已知區(qū)間長度以及滿足不等式的區(qū)間長度,再由根與系數(shù)的關系得到關于m的方程解之

解答 解:在區(qū)間[-2,4]上隨機取一個數(shù)x對應的區(qū)間長度為6,
而使f(x)<0的概率為$\frac{2}{3}$,即x2-2x+m<0的概率為$\frac{2}{3}$,
得到使x2-2x+m<0成立的x的區(qū)間長度為4,即|x1-x2|=4,
所以(x1+x22-4x1x2=16,
所以4-4m=16,解得m=-3;
故答案為:-3.

點評 本題考查幾何概型,解題的關鍵是:解不等式,確定其測度,利用概率的求法以及根與系數(shù)的關系得到關于m 的方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.f(x)是奇函數(shù),且滿足f(x+4)=f(x),當0≤x≤1時,f(x)=x,則f(7.5)的值為-0.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若關于x的不等式ax-b>0的解集是(-∞,-2),關于x的不等式$\frac{a{x}^{2}+bx}{x-1}$>0的解集為(  )
A.(-2,0)∪(1,+∞)B.(-∞,0)∪(1,2)C.(-∞,-2)∪(0,1)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設f(x)是定義在R上的周期為2的函數(shù),當x∈[-1,1)時,f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+\frac{10}{9},-1≤x≤0}\\{lo{g}_{3}x,0<x<1}\end{array}\right.$,
則f(f($\frac{3}{2}$))=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在邊長為2的正方形ABCD中任取一點P,則△PAB、△PBC、△PCD、△PDA的面積均大于$\frac{1}{6}$的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{9}$C.$\frac{1}{36}$D.$\frac{25}{36}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,已知AB⊥平面BEC,AB∥CD,AB=BC=4,CD=2,△BEC為等邊三角形,F(xiàn),G分別是AB,CD的中點.求證.
(Ⅰ)平面ABE⊥平面ADE;
(Ⅱ)求平面ADE與平面EFG所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求函數(shù)$y={2^{{x^2}-2x+4}}$的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.從參加環(huán)保知識競賽的學生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖所示,觀察圖形,回答下列問題:
(1)[80,90)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).
(3)估計這次環(huán)保知識競賽成績的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)$y=-2{sin^2}x-2\sqrt{3}sinxcosx$的最小正周期和最大值分別( 。
A.$T=2π,{y_{max}}=2\sqrt{3}$B.$T=π,{y_{max}}=2\sqrt{3}$C.T=π,ymax=3D.T=π,ymax=1

查看答案和解析>>

同步練習冊答案