18.若關(guān)于x的不等式ax-b>0的解集是(-∞,-2),關(guān)于x的不等式$\frac{a{x}^{2}+bx}{x-1}$>0的解集為(  )
A.(-2,0)∪(1,+∞)B.(-∞,0)∪(1,2)C.(-∞,-2)∪(0,1)D.(-∞,1)∪(2,+∞)

分析 由已知得到a<0,并且$\frac{a}$=-2,將所求不等式化簡為一次因式積的形式,解不等式.

解答 解:由已知得到a<0,并且$\frac{a}$=-2,
所以關(guān)于x的不等式$\frac{a{x}^{2}+bx}{x-1}$>0化簡為$\frac{x(ax+b)}{x-1}>0$,
即為x(ax+b)(x-1)>0,所以解集為(-∞,0)∪(1,2);
故選:B.

點評 本題考查了分式不等式的解法;由已知得到a的符號以及$\frac{a}$是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足a2-b2-c2+$\sqrt{3}$bc=0.則角A的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若對任意實數(shù)x,不等式|x-3|+x-a>0恒成立,則實數(shù)a的取值范圍是( 。
A.a<0B.0<a<3C.a<3D.a>-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在等比數(shù)列{an}中,a1,a8是方程3x2+2x-6=0的兩個根,則a4•a5=(  )
A.-6B.-2C.$-\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)等差數(shù)列{an}的前n項和為Sn,若a1=-13,d=2,則當Sn取最小值時,n等于( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知A(3,0),B(0,3),C(cosα,sinα)
(1)若$\overrightarrow{AC}•\overrightarrow{BC}$=-1,求sinα-cosα的值;
(2)若|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{13}$,且α∈(0,π),求$\overrightarrow{OB}$與$\overrightarrow{OC}$的夾角的正弦值.(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求下列各函數(shù)的導數(shù)
(1)y=xlnx
(2)y=xsinx+cosx
(3)f(x)=5ax(a>0且a不為1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=x2-2x+m,在區(qū)間[-2,4]上隨機取一個實數(shù)x,若事件“f(x)<0”發(fā)生的概率為$\frac{2}{3}$,則m=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.邊長為2的正三角形繞其一邊旋轉(zhuǎn)一周得一幾何體,則其表面積與俯視圖(垂直于旋轉(zhuǎn)軸)的面積分別為(  )
A.$2\sqrt{3}π,3π$B.$4\sqrt{3}π,3π$C.$\sqrt{3}π,2π$D.3π,2π

查看答案和解析>>

同步練習冊答案