10.已知集合A={1,2,3,a},B={3,a2},則使得(∁RA)∩B=∅成立的a的值的個(gè)數(shù)為( 。
A.2B.3C.4D.5

分析 根據(jù)條件即可得到a2的可能取值為1,2,a,并且a≠1,這樣求出a的可能取值即可得出答案.

解答 解:根據(jù)集合A,B,若(∁RA)∩B=∅,則:
a2=1,或a2=2,或a2=a,且a≠1;
∴$a=-1,±\sqrt{2},或0$;
即a的值的個(gè)數(shù)為4.
故選C.

點(diǎn)評 考查列舉法表示集合的概念及表示形式,交集、補(bǔ)集的運(yùn)算,及空集的概念,集合元素的互異性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=mx2-mx-1,對于任意的x∈[1,3],f(x)<-m+5恒成立,則m的取值范圍是(-∞,$\frac{6}{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$).
(1)求f(x)的對稱軸和對稱中心;
(2)求函數(shù)f(x)在[-$\frac{π}{8}$,$\frac{π}{2}$]上的最小值和最大值,并求出取得最值時(shí)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.計(jì)算:sin(-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,cos(-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,tan(-$\frac{7π}{6}$)=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若存在兩個(gè)正實(shí)數(shù)x,y,使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中e為自然對數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍是$({-∞,0})∪[{\frac{3}{2e},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(3-2a)>f(a),則實(shí)數(shù)a的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=x+\frac{2}{x}$,利用定義證明:
(1)f(x)為奇函數(shù);
(2)f(x)在$[\sqrt{2}$,+∞)上是增加的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.f(x)=xsinx+cosx;
(1)判斷f(x)在區(qū)間(2,3)上的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論(參考數(shù)據(jù):$\sqrt{2}≈1.4,\sqrt{6}$≈2.4)
(2)若存在$x∈({\frac{π}{4},\frac{π}{2}})$,使得f(x)>kx2+cosx成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a=21.2,b=20.8,c=2log52,則a,b,c的大小關(guān)系為( 。
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

同步練習(xí)冊答案