已知P為平面ABC內(nèi)一點,O為空間任意一點,若
OP
=
1
2
OA
+
1
3
OB
OC
,則的值為
 
考點:平面向量的基本定理及其意義
專題:空間向量及應(yīng)用
分析:P為平面ABC內(nèi)一點,O為空間任意一點,
OP
=
1
2
OA
+
1
3
OB
OC
,可得
1
2
+
1
3
=0,解出即可.
解答: 解:∵P為平面ABC內(nèi)一點,O為空間任意一點,
OP
=
1
2
OA
+
1
3
OB
OC

1
2
+
1
3
=0,
解得λ=
1
6

故答案為:
1
6
點評:本題考查了共面向量定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種波的傳播是由曲線f(x)=Asin(ωx+φ)(A>0)來實現(xiàn)的,我們把函數(shù)解析式f(x)=Asin(ωx+φ)稱為“波”,把振幅都是A 的波稱為“A類波”,把兩個解析式相加稱為波的疊加.
(1)已知“1 類波”中的兩個波f1(x)=sin(x+φ1)與f2(x)=sin(x+φ2)疊加后仍是“1類波”,求φ21的值;
(2)在“A類波“中有一個是f1(x)=sinx,從 A類波中再找出兩個不同的波(每兩個波的初相φ都不同)使得這三個不同的波疊加之后是“平波”,即疊加后y=0,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=-1,an+1=an+
1
n(n+1)
,n∈N*,寫出前5項,并寫出這個數(shù)列的一個通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}各項均為正數(shù),且對任意n∈N*,都有an,bn,a n+1成等差數(shù)列,bn,a n+1,b n+1成等比數(shù)列,且a1=10,a2=15,求證:{
bn
}為等差數(shù)列并求出{an},{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在平行四邊形ABCD中,AC與BD交于點O,
AE
=
1
4
AC
AB
=a,
AD
=b,則
DE
=
 
.(結(jié)果用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=ln
1+x2
1-x2
的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體AC′的棱長為a.
(1)寫出與AC平行的面對角線;
(2)寫出與AC異面的面對角線;
(3)求直線AC與B′D′所成的角;
(4)求直線BA′和CC′所成的角;
(5)求直線BA′與B′C所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的兩頂點A(3,7),B(-2,5),若AC的中點在y軸上,BC的中點在x軸上
(1)求點C的坐標(biāo);
(2)求AC邊上的中線BD的長及直線BD的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=tan2x,求滿足f(x)>0在(
π
4
,
4
)上的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案