A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 F(1,0).設(shè)A(x1,y1),B(x2,y2).由∠QBF=90°,可得kBFkQB=$\frac{{y}_{2}^{2}}{{x}_{2}^{2}-1}$=-1,又${y}_{2}^{2}=4{x}_{2}$,聯(lián)立解得x2=$\sqrt{5}$-2.取B$(\sqrt{5}-2,-2\sqrt{\sqrt{5}-2})$,由A,F(xiàn),B三點(diǎn)共線可得$\frac{{y}_{1}}{{x}_{1}-1}$=$\frac{-2\sqrt{\sqrt{5}-2}}{\sqrt{5}-2-1}$,又${y}_{1}^{2}=4{x}_{1}$,聯(lián)立解出2.利用|AF|-|BF|=x1-x2即可得出.
解答 解:F(1,0).
設(shè)A(x1,y1),B(x2,y2).
∵∠QBF=90°,
∴kBFkQB=$\frac{{y}_{2}}{{x}_{2}-1}$$•\frac{{y}_{2}}{{x}_{2}+1}$=$\frac{{y}_{2}^{2}}{{x}_{2}^{2}-1}$=-1,
又${y}_{2}^{2}=4{x}_{2}$,
∴$\frac{4{x}_{2}}{{x}_{2}^{2}-1}$=-1,化為${x}_{2}^{2}+4{x}_{2}$-1=0,解得x2=$\sqrt{5}$-2.
∴取B$(\sqrt{5}-2,-2\sqrt{\sqrt{5}-2})$,
可得$\frac{{y}_{1}}{{x}_{1}-1}$=$\frac{-2\sqrt{\sqrt{5}-2}}{\sqrt{5}-2-1}$,又${y}_{1}^{2}=4{x}_{1}$,
聯(lián)立解得x1=$\sqrt{5}$+2.
∴|AF|-|BF|=x1-x2=4.
故選:D.
點(diǎn)評 本題考查了拋物線與圓的標(biāo)準(zhǔn)方程及其性質(zhì)、相互垂直的直線斜率之間的關(guān)系、三點(diǎn)共線與斜率的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
危險(xiǎn)駕駛 | 非危險(xiǎn)駕駛 | 合計(jì) | |
男駕駛員 | 15 | 45 | 60 |
女駕駛員 | 15 | 25 | 40 |
合計(jì) | 30 | 70 | 100 |
P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 13 | C. | 15 | D. | 17 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com