3.已知函數(shù)f(x)=|x+2|+|x+m|(m<2),若f(x)的最小值為1.
(1)試求實(shí)數(shù)m的值;
(2)求證:log2(2a+2b)-m≥$\frac{a+b}{2}$.

分析 (1)利用絕對(duì)值不等式,結(jié)合f(x)的最小值為1.求實(shí)數(shù)m的值;
(2)利用基本不等式,即可證明結(jié)論.

解答 解:(1)f(x)=|x+2|+|x+m|≥|2-m|,
當(dāng)且僅當(dāng)(x+2)(x-m)≤0時(shí)取等號(hào)…(2分)
所以|2-m|=1,…(3分)
因?yàn)閙<2,
所以解得 m=1…(4分)
證明:(2)∵2a>0,2b>0,
∴2a+2b≥$2\sqrt{{2}^{a+b}}$,
∴l(xiāng)og2(2a+2b)-m≥log2($2\sqrt{{2}^{a+b}}$)-1=$\frac{a+b}{2}$.…(5分)

點(diǎn)評(píng) 本題主要考查了絕對(duì)值不等式的解法,考查了分類討論思想和轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知定義在(0,+∞)上的函數(shù)f(x)滿足f(x)=f($\frac{1}{x}$),當(dāng)x∈(0,1]時(shí),f(x)=-lnx,若曲線g(x)=f(x)-2ax在(0,e2](其中e是自然對(duì)數(shù)的底數(shù))內(nèi)的圖象與x軸有3個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.($\frac{1}{4e}$,$\frac{1}{e}$)B.($\frac{1}{4e}$,$\frac{1}{2e}$]C.[$\frac{1}{e^2}$,$\frac{1}{e}$)D.[$\frac{1}{e^2}$,$\frac{1}{2e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某課題組對(duì)春晚參加“咻一咻”搶紅包活動(dòng)的同學(xué)進(jìn)行調(diào)查,按照使用手機(jī)系統(tǒng)不同(安卓系統(tǒng)和IOS系統(tǒng))分別隨機(jī)抽取5名同學(xué)進(jìn)行問(wèn)卷調(diào)查,發(fā)現(xiàn)他們咻得紅包總金額數(shù)如表所示:
手機(jī)系統(tǒng)
安卓系統(tǒng)(元)253209
IOS系統(tǒng)(元)431897
(1)如果認(rèn)為“咻”得紅包總金額超過(guò)6元為“咻得多”,否則為“咻得少”,請(qǐng)判斷手機(jī)系統(tǒng)與咻得紅包總金額的多少是否有關(guān)?
(2)要從5名使用安卓系統(tǒng)的同學(xué)中隨機(jī)選出2名參加一項(xiàng)活動(dòng),以X表示選中的同學(xué)中咻得紅包總金額超過(guò)6元的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ln(1+x)-$\frac{{a{x^2}+x}}{{{{(1+x)}^2}}}$.
(Ⅰ)當(dāng)a≤2時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若x>0,求函數(shù)g(x)=${(1+\frac{1}{x})^x}{(1+x)^{\frac{1}{x}}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=2x-a,g(x)=xex,若對(duì)任意x1∈[0,1]存在x2∈[-1,1],使f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍為[2-e,$\frac{1}{e}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.方程($\frac{1}{3}$)x+x-2=0的解的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.為了研究色盲與性別的關(guān)系,調(diào)查了1000人,得到了如表的數(shù)據(jù),則(  )
合計(jì)
正常442514956
色盲38644
合計(jì)4805201000
A.99.9%的把握認(rèn)為色盲與性別有關(guān)B.99%的把握認(rèn)為色盲與性別有關(guān)
C.95%的把握認(rèn)為色盲與性別有關(guān)D.90%的把握認(rèn)為色盲與性別有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.為考察高中生的性別與喜歡數(shù)學(xué)課程之間的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行檢驗(yàn),經(jīng)計(jì)算K2=7.069,參考下表,則認(rèn)為“性別與喜歡數(shù)學(xué)有關(guān)”犯錯(cuò)誤的概率不超過(guò)( 。
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若一個(gè)球內(nèi)切于一個(gè)圓柱,則該圓柱的底面半徑R與母線l的關(guān)系是( 。
A.R=lB.l=2RC.l=$\frac{1}{2}$RD.l與R沒(méi)有關(guān)系

查看答案和解析>>

同步練習(xí)冊(cè)答案