12.用數(shù)學(xué)歸納法證明:$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+…+$\frac{{n}^{2}}{(2n-1)(2n+1)}$=$\frac{n(n+1)}{2(2n+1)}$,推證當(dāng)n=k+1等式也成立時,用上歸納假設(shè)后需要證明的等式是(  )
A.$\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$
B.$\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2k+3}$
C.$\frac{k(k+1)}{(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$
D.$\frac{k(k+1)}{2(2k+3)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$

分析 首先由題目假設(shè)n=k時等式成立,再用k+1替換,即可得到結(jié)果

解答 解:假設(shè)n=k時成立,即為:$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+…+$\frac{{k}^{2}}{(2k+1)(2k-1)}$=$\frac{k(k+1)}{2(2k+1)}$,
那么當(dāng)n=k+1時,需要證明,$\frac{k(k+1)}{2(2k+3)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$,
故選:D.

點評 此題主要考查數(shù)學(xué)歸納法的概念問題,涵蓋知識點少,屬于基礎(chǔ)性題目.需要同學(xué)們對概念理解記憶.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)a≥0,b≥0,且a≠b,求證:對于任意正數(shù)p都有[$\frac{a+pb}{p+1}$]2<$\frac{{a}^{2}+p^{2}}{p+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點為F1,F(xiàn)2,拋物線E:y2=2px(p>0)的焦點與F2重合,A為曲線C與E的一個焦點,|AF1|=$\frac{7}{3}$,|AF2|=$\frac{5}{3}$,且∠AF2F1為銳角.
(1)求橢圓C和拋物線E的方程;
(2)若動點M在橢圓C上,動點N在直線l:y=2$\sqrt{3}$上,若OM⊥ON,探究原點O到直線MN的距離是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.正數(shù)x,y滿足x+2y=1,則$\frac{1}{x}$+$\frac{1}{y}$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線x2=2py(p>0)的準(zhǔn)線經(jīng)過橢圓$\frac{y^2}{2}+{x^2}$=1的一個焦點,則拋物線焦點坐標(biāo)為(  )
A.(0,-2)B.(0,2)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=-x2-x+2,則函數(shù)f(x)的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x=3n-1,n∈Z},B={x|y=$\sqrt{25-{x^2}}$},則集合A∩B的元素個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列四種說法中,
①命題“存在x∈R,x2-x>0”的否定是“對于任意x∈R,x2-x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2,$\frac{\sqrt{2}}{2}$),則f(4)的值等于$\frac{1}{2}$;
④已知向量$\overrightarrow{a}$=(3,-4),$\overrightarrow$=(2,1),則向量 $\overrightarrow{a}$在向量$\overrightarrow$方向上的投影是$\frac{2}{5}$.
說法錯誤的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=2cos2x+cos(2x+$\frac{π}{3}$)-1在[0,π]內(nèi)的一條對稱軸方程是$x=\frac{5π}{12}$或$x=\frac{11π}{12}$,在[0,π]內(nèi)單調(diào)遞增區(qū)間是$[\frac{5π}{12},\frac{11π}{12}]$.

查看答案和解析>>

同步練習(xí)冊答案