分析 (1)由已知復(fù)數(shù)求出ω-z,ω+z,得到A,B的坐標(biāo),代入|OA|=|OB|求得a值,則復(fù)數(shù)z可求;
(2)求出A,B的坐標(biāo),可得三角形OAB是邊長(zhǎng)為2的等腰直角三角形,則其面積可求.
解答 解:(1)∵ω=1+i,z=a+i,∴ω-z=1-a,ω+z=1+a+2i,
∴A(1-a,0),B(1+a,2),
由|OA|=|OB|,得$\sqrt{(1-a)^{2}}=\sqrt{(1+a)^{2}+{2}^{2}}$,解得a=-1.
∴z=-1+i;
(2)A(2,0),B(0,2),∴三角形OAB是邊長(zhǎng)為2的等腰直角三角形,其面積S=$\frac{1}{2}×2×2=2$.
點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{k}{\sqrt{1+{k}^{2}}}$ | B. | $\frac{1}{\sqrt{1+{k}^{2}}}$ | C. | -$\frac{k}{\sqrt{1+{k}^{2}}}$ | D. | -$\frac{1}{\sqrt{1+{k}^{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com