【題目】(1)閱讀以下案例,利用此案例的想法化簡(jiǎn).
案例:考察恒等式左右兩邊的系數(shù).
因?yàn)橛疫?/span>,
所以,右邊的系數(shù)為,
而左邊的系數(shù)為,
所以=.
(2)求證:.
【答案】(1);(2)見(jiàn)解析.
【解析】
(1)考查恒等式(1+x)7=(1+x)3(x+1)4左右兩邊x3的系數(shù)可得;
(2)根據(jù) ,考查恒等式(1+x)2n=(1+x)n(x+1)n左右兩邊xn的系數(shù).考查恒等式(1+x)2n﹣1=(1+x)n﹣1(x+1)n左右兩邊xn﹣1的系數(shù),可得等式成立.
(1)考查恒等式(1+x)7=(1+x)3(x+1)4左右兩邊x3的系數(shù),
因?yàn)橛疫叄?+x)3(x+1)4=(+x+x2+x3)(x4+x3+x2+x+),
所以,右邊x3的系數(shù)為=
而左邊x3的系數(shù)為:,所以.
(2)∵,
.
考查恒等式(1+x)2n=(1+x)n(x+1)n左右兩邊xn的系數(shù).
因?yàn)橛疫厁n的系數(shù)為=,而左邊的xn的系數(shù)為.
所以,同理可求得
考查恒等式(1+x)2n﹣1=(1+x)n﹣1(x+1)n左右兩邊xn﹣1的系數(shù),
因?yàn)橛疫叄?+x)n﹣1(x+1)n=(+x+…+xn﹣1)(xn+xn﹣1+…+),
所以,右邊的xn﹣1的系數(shù)為=,
而左邊的xn﹣1的系數(shù)為,所以=,
﹣=+2n+﹣
=2n+=n(+)+=n(+)+
=n+=(n+1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,且,,,點(diǎn)G,H分別為邊,的中點(diǎn),點(diǎn)M是線段上的動(dòng)點(diǎn).
(1)求證:;
(2)若,當(dāng)三棱錐的體積最大時(shí),求點(diǎn)C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,為的中點(diǎn),在側(cè)面上,有下列四個(gè)命題:
①若,則面積的最小值為;
②平面內(nèi)存在與平行的直線;
③過(guò)作平面,使得棱,,在平面的正投影的長(zhǎng)度相等,則這樣的平面有4個(gè);
④過(guò)作面與面平行,則正方體在面的正投影面積為.
則上述四個(gè)命題中,真命題的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在著名的漢諾塔問(wèn)題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤(pán),三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個(gè)圓盤(pán),較大的圓盤(pán)都在較小的圓盤(pán)下面.現(xiàn)把圓盤(pán)從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動(dòng)一個(gè)圓盤(pán),且每次移動(dòng)后,每根柱上較大的圓盤(pán)不能放在較小的圓盤(pán)上面,規(guī)定一個(gè)圓盤(pán)從任一根柱上移動(dòng)到另一根柱上為一次移動(dòng).若將個(gè)圓盤(pán)從起始柱移動(dòng)到目標(biāo)柱上最少需要移動(dòng)的次數(shù)記為,則( )
A. 33B. 31C. 17D. 15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,是橢圓上一點(diǎn),軸,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,,所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列中,,且對(duì)任意,成等差數(shù)列,其公差為.
(1)若,求的值;
(2)若,證明成等比數(shù)列();
(3)若對(duì)任意,成等比數(shù)列,其公比為,設(shè),證明數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校針對(duì)校食堂飯菜質(zhì)量開(kāi)展問(wèn)卷調(diào)查,提供滿意與不滿意兩種回答,調(diào)查結(jié)果如下表(單位:人):
學(xué)生 | 高一 | 高二 | 高三 |
滿意 | 500 | 600 | 800 |
不滿意 | 300 | 200 | 400 |
(1)求從所有參與調(diào)查的人中任選1人是高三學(xué)生的概率;
(2)從參與調(diào)查的高三學(xué)生中,用分層抽樣的方法抽取6人,在這6人中任意選取2人,求這兩人對(duì)校食堂飯菜質(zhì)量都滿意的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com