A. | cosα | B. | sinα | C. | tanα | D. | $\frac{1}{tanα}$=cotα |
分析 鏈接BD、AC,則∠ADB=90°=∠ACP,根據(jù)圓周角定理、直角三角形中的邊角關系證得△PCD∽△PAB,從而求得$\frac{CD}{AB}$的值.
解答 解:如圖,AB是半圓O的直徑,弦AD、BC相交于點P,∠BPD=α,
鏈接BD、AC,則∠ADB=90°=∠ACP,
cos∠DPB=cosα=$\frac{PD}{PB}$=cos∠APC=$\frac{PC}{AP}$,∴△PCD∽△PAB,∴$\frac{CD}{AB}$=$\frac{PC}{AP}$=cosα,
故選:A.
點評 本題主要考查三角形相似的判定、圓周角定理、直角三角形中的邊角關系,作出輔助線,是解題的關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1>-1 | B. | x2<0 | C. | x3>2 | D. | 0<x2<1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com