A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①根據(jù)全稱(chēng)命題的否定是特稱(chēng)命題進(jìn)行判斷,
②根據(jù)相關(guān)性系數(shù)的性質(zhì)進(jìn)行判斷,
③根據(jù)幾何概型的概率公式進(jìn)行判斷,
④根據(jù)不等式恒成立進(jìn)行判斷.
解答 解:①命題“任意x∈R,x2≥0”的否定是“存在x0∈R,x02<0”,故①錯(cuò)誤;
②根據(jù)線性相關(guān)系數(shù)r的意義可知,當(dāng)r的絕對(duì)值越接近于1時(shí),兩個(gè)隨機(jī)變量線性相關(guān)性越強(qiáng),故②正確,
③若a,b∈[0,1],則不等式a2+b2<$\frac{1}{4}$成立的概率P=$\frac{\frac{1}{4}×π×(\frac{1}{2})^{2}}{1×1}$=$\frac{π}{16}$;故③錯(cuò)誤,
④函數(shù)y=log2(x2-ax+2)在[2,+∞)上恒為正,
則log2(x2-ax+2)>0,即x2-ax+2>1,x2-ax+1>0恒成立,
即a<x+$\frac{1}{x}$在[2,+∞)上恒成立,
∵當(dāng)x≥2時(shí),y=x+$\frac{1}{x}$在[2,+∞)上為增函數(shù),
∴當(dāng)x=2時(shí),x+$\frac{1}{x}$取得最小值2+$\frac{1}{2}$=$\frac{5}{2}$,
∴a<$\frac{5}{2}$.
則實(shí)數(shù)a的取值范圍是(-∞,$\frac{5}{2}$).故④正確,
故正確的是:②④.
故選:B.
點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度不大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 模型1的相關(guān)指數(shù)R2為0.87 | B. | 模型2的相關(guān)指數(shù)R2為0.97 | ||
C. | 模型3的相關(guān)指數(shù)R2為0.50 | D. | 模型4的相關(guān)指數(shù)R2為0.25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}{\vec e_1}-\frac{1}{3}{\vec e_2}$ | B. | $\frac{2}{3}{\vec e_1}+\frac{4}{3}{\vec e_2}$ | C. | $\frac{1}{3}{\vec e_1}+\frac{2}{3}{\vec e_2}$ | D. | $\frac{2}{3}{\vec e_1}+\frac{1}{3}{\vec e_2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | cosα | B. | sinα | C. | tanα | D. | $\frac{1}{tanα}$=cotα |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com