分析 (1)設(shè)數(shù)列{an}是公差為d的等差數(shù)列,運用等比數(shù)列的中項的性質(zhì)和等差數(shù)列的通項公式,解方程可得首項和公差,即可得到所求通項公式;
(2)求得$\frac{1}{{a}_{n}•_{n}}$=$\frac{1}{(n+2)(2n+6)}$=$\frac{1}{2}$($\frac{1}{n+2}$-$\frac{1}{n+3}$),運用數(shù)列的求和方法:裂項相消求和,化簡整理即可得到所求和.
解答 解:(1)設(shè)數(shù)列{an}是公差為d的等差數(shù)列,
由bn=an+n+4,若b1,b3,b6成等比數(shù)列,
可得b1b6=b32,
即為(a1+5)(a6+10)=(a3+7)2,
由b2=a8,即a2+6=a8,
可得d=$\frac{{a}_{8}-{a}_{2}}{8-2}$=1,
則(a1+5)(a1+5+10)=(a1+2+7)2,
解得a1=3,
則an=a1+(n-1)d=3+n-1=n+2;
bn=an+n+4=n+2+n+4=2n+6;
(2)$\frac{1}{{a}_{n}•_{n}}$=$\frac{1}{(n+2)(2n+6)}$=$\frac{1}{2}$($\frac{1}{n+2}$-$\frac{1}{n+3}$),
則前n項和Sn=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{6}$+…+$\frac{1}{n+2}$-$\frac{1}{n+3}$)=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{n+3}$)=$\frac{n}{6n+18}$.
點評 本題考查等差數(shù)列通項公式的運用,等比數(shù)列的中項的性質(zhì),同時考查數(shù)列的求和方法:裂項相消求和,化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,5] | B. | (-1,5] | C. | [-1,1] | D. | [1,5] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
休閑方式 性別 | 看電視 | 運動 | 合計 |
女 | 10 | 10 | 20 |
男 | 10 | 50 | 60 |
總計 | 20 | 60 | 80 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | 2或$\frac{1}{2}$ | D. | -2或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com