【題目】如圖,四棱錐中,底面,,,為線段上一點(diǎn),,的中點(diǎn).

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

【答案】(1)證明見解析;(2).

【解析】

(1)法一、取中點(diǎn),連接,,由三角形的中位線定理可得,且,再由已知得,且,得到,且,說明四邊形為平行四邊形,可得,由線面平行的判定得到平面

法二、證明平面,轉(zhuǎn)化為證明平面平面,在中,過,垂足為,連接,由已知底面,可得,通過求解直角三角形得到,由面面平行的判定可得平面平面,則結(jié)論得證;

(2)連接,證得,進(jìn)一步得到平面平面,在平面內(nèi),過,交,連接,則為直線與平面所成角.然后求解直角三角形可得直線與平面所成角的正弦值.

(1)證明:法一、如圖,取中點(diǎn),連接,,

的中點(diǎn),

,且,

,且,

,且,

,且

四邊形為平行四邊形,則,

平面,平面

平面;

法二、

中,過,垂足為,連接,

中,由已知,,得,

,

,則,

中,

,

由余弦定理得:,

,

而在中, ,

,即,

,則平面

底面,得,又,

,則平面

,

平面平面,則MN∥平面;

(2)解:在中,由,,,得

,則,

底面平面,

平面平面,且平面平面

平面,則平面平面

在平面內(nèi),過,交,連接,則為直線與平面所成角.

中,由的中點(diǎn),得

,

中,由,得,

直線與平面所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】手機(jī)中的“運(yùn)動(dòng)”具有這樣的功能,不僅可以看自己每天的運(yùn)動(dòng)步數(shù),還可以看到朋友圈里好友的步數(shù).小明的朋友圈里有大量好友參與了“運(yùn)動(dòng)”,他隨機(jī)選取了其中30名,其中男女各15名,記錄了他們某一天的走路步數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表所示:

0

2

4

7

2

1

3

7

3

1

(Ⅰ)以樣本估計(jì)總體,視樣本頻率為概率,在小明朋友圈里的男性好友中任意選取3名,其中走路步數(shù)低于7500步的有名,求的分布列和數(shù)學(xué)期望;

(Ⅱ)如果某人一天的走路步數(shù)超過7500步,此人將被“運(yùn)動(dòng)”評(píng)定為“積極型”,否則為“消極”.根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?

積極型

消極型

總計(jì)

總計(jì)

附:.

0.10

0.05

0.025

0.01

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O,直線l

若直線l與圓O交于不同的兩點(diǎn)AB,當(dāng)為銳角時(shí),求k的取值范圍;

,P是直線l上的動(dòng)點(diǎn),過P作圓O的兩條切線PCPD,切點(diǎn)為C、D,則直線CD是否過定點(diǎn)?若是,求出定點(diǎn),并說明理由.

EF、GH為圓O的兩條相互垂直的弦,垂足為,求四邊形EGFH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系. 已知曲線的極坐標(biāo)方程為 ,直線 的參數(shù)方程為 (為參數(shù)).

(I)分別求曲線的直角坐標(biāo)方程和直線 的普通方程;

(II)設(shè)曲線和直線相交于兩點(diǎn),求弦長(zhǎng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年4月23日我市正式宣布實(shí)施“3+1+2”的高考新方案,“3”是指必考的語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門學(xué)科,“1”是指在物理和歷史中必選一科,“2”是指在化學(xué)、生物、政治、地理四科中任選兩科.為了解我校高一學(xué)生在物理和歷史中的選科意愿情況,進(jìn)行了一次模擬選科. 已知我校高一參與物理和歷史選科的有1800名學(xué)生,其中男生1000人,女生800人. 按分層抽樣的方法從中抽取了36個(gè)樣本,統(tǒng)計(jì)知其中有17個(gè)男生選物理,6個(gè)女生選歷史.

(I)根據(jù)所抽取的樣本數(shù)據(jù),填寫答題卷中的列聯(lián)表. 并根據(jù)統(tǒng)計(jì)量判斷能否有的把握認(rèn)為選擇物理還是歷史與性別有關(guān)?

(II)在樣本里選歷史的人中任選4人,記選出4人中男生有人,女生有人,求隨機(jī)變量 的分布列和數(shù)學(xué)期望.(的計(jì)算公式見下),臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】故宮博物院五一期間同時(shí)舉辦“戲曲文化展”、“明代御窖瓷器展”、“歷代青綠山水畫展”、 “趙孟頫書畫展”四個(gè)展覽.某同學(xué)決定在五一當(dāng)天的上、下午各參觀其中的一個(gè),且至少參觀一個(gè)畫展,則不同的參觀方案共有

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)點(diǎn),直線,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn),,.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)直線過點(diǎn),與軌跡交于兩點(diǎn),過點(diǎn)的直線與直線交于點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成一個(gè)大的正方形,若圖中直角三角形兩銳角分別為,,且小正方形與大正方形面積之比為,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線截圓所得的弦長(zhǎng)為.直線的方程為

(1)求圓的方程;

(2)若直線過定點(diǎn),點(diǎn)在圓上,且,為線段的中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案