【題目】故宮博物院五一期間同時(shí)舉辦“戲曲文化展”、“明代御窖瓷器展”、“歷代青綠山水畫展”、 “趙孟頫書畫展”四個(gè)展覽.某同學(xué)決定在五一當(dāng)天的上、下午各參觀其中的一個(gè),且至少參觀一個(gè)畫展,則不同的參觀方案共有

A. 6 B. 8 C. 10 D. 12

【答案】C

【解析】

根據(jù)題意,分2種情況討論:①,該同學(xué)只參觀一個(gè)畫展,②,該同學(xué)參觀兩個(gè)畫展,求出每種情況的參加方案的數(shù)目,由加法原理計(jì)算可得答案.

根據(jù)題意,分2種情況討論:
①,該同學(xué)只參觀一個(gè)畫展,在“歷代青綠山水畫展”、“趙孟頫書畫展”中任選1個(gè),有 種選法,
可以在“戲曲文化展”、“明代御窖瓷器展”中任選1個(gè),有 種選法,
將選出22個(gè)展覽安排在五一的上、下午,有種情況,
則只參觀一共畫展的方案有 種,
②,該同學(xué)參觀兩個(gè)畫展,將“歷代青綠山水畫展”、“趙孟頫書畫展”全排列,安排在五一的上、下午,有種情況,
即參觀兩個(gè)畫展有2種方案,
則不同的參觀方案共有 個(gè)
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 。

(1)若曲線在點(diǎn)處的切線互相垂直,求 值;

(2)討論函數(shù)的零點(diǎn)個(gè)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(II) 當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,,,為線段上一點(diǎn),,的中點(diǎn).

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線有相同的漸近線,且經(jīng)過點(diǎn),

1)求雙曲線的方程,并寫出其離心率與漸近線方程;

2)已知直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)在圓上,求實(shí)數(shù)的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線C:=1的右焦點(diǎn)F且與x軸不重合的直線交雙曲線C于A、B兩個(gè)點(diǎn),定點(diǎn)D(,0).

(1)當(dāng)直線AB垂直于x軸時(shí),求直線AD的方程.

(2)設(shè)直線AD與直線x=1相交于點(diǎn)E,求證:FD∥BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四大名著是中國文學(xué)史上的經(jīng)典作品,是世界寶貴的文化遺產(chǎn).某學(xué)校舉行的“文學(xué)名著閱讀月”活動(dòng)中,甲、乙、丙、丁、戊五名同學(xué)相約去學(xué)校圖書室借閱四大名著《紅樓夢(mèng)》、《三國演義》、《水滸傳》、《西游記》(每種名著均有若干本),要求每人只借閱一本名著,每種名著均有人借閱,且甲只借閱《三國演義》,則不同的借閱方案種數(shù)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若是第二象限角,試分別確定,,的終邊所在的位置.

查看答案和解析>>

同步練習(xí)冊(cè)答案