【題目】已知函數(shù)f(x)=2cos22x﹣2,給出下列命題: ①β∈R,f(x+β)為奇函數(shù);
②α∈(0, ),f(x)=f(x+2α)對x∈R恒成立;
③x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為 ;
④x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有( )
A.①②
B.③④
C.②③
D.①④
【答案】C
【解析】解:由題意,f(x)=2cos22x﹣2=cos4x﹣1;
對于①,∵f(x)=cos4x﹣1的圖象如圖所示:
函數(shù)f(x+β)的圖象是f(x)的圖象向左或向右平移|β|個單位,
它不會是奇函數(shù)的,故①錯誤;
對于②,f(x)=f(x+2α),∴cos4x﹣1=cos(4x+8α)﹣1,
∴8α=2kπ,∴α= ,k∈Z;
又α∈(0, ),∴取α= 或 時,
∴f(x)=f(x+2α)對x∈R恒成立,②正確;
對于③,|f(x1)﹣f(x2)|=|cos4x1﹣cos4x2|=2時,
|x1﹣x2|的最小值為 = = ,∴③正確;
對于④,當(dāng)f(x1)=f(x2)=0時,
x1﹣x2=kT=k = (k∈Z),∴④錯誤;
綜上,真命題是②③.
故選:C.
化簡函數(shù)f(x),畫出f(x)的圖象,根據(jù)圖象平移判斷函數(shù)f(x+β)不是奇函數(shù),判斷①錯誤;
根據(jù)f(x)=f(x+2α)求出方程在α∈(0, )的解,判斷②正確;
由|f(x1)﹣f(x2)|=2時,|x1﹣x2|的最小值為 = ,判斷③正確;
當(dāng)f(x1)=f(x2)=0時,x1﹣x2=kT= ,判斷④錯誤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有A、B兩個景點(diǎn),位于一條小路(直道)的同側(cè),分別距小路 km和2 km,且A、B景點(diǎn)間相距2 km,今欲在該小路上設(shè)一觀景點(diǎn),使兩景點(diǎn)在同時進(jìn)入視線時有最佳觀賞和拍攝效果,則觀景點(diǎn)應(yīng)設(shè)于____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:(a-1)x+y+b=0,l2:ax+by-4=0,求滿足下列條件的a,b的值.
(1)l1⊥l2,且l1過點(diǎn)(1,1);
(2)l1∥l2,且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中為了解高中學(xué)生的性別和喜歡打籃球是否有關(guān),對50名高中學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡打籃球 | 不喜歡打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 |
已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?
附:K2=
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,點(diǎn)E是AB的中點(diǎn).
(1)求證:OE∥平面BCC1B1.
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿足下列條件的點(diǎn)P的坐標(biāo).
(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).
(2)∠MPN是直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為(2 , ). (Ⅰ)求直線l以及曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A,B兩點(diǎn),求△PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會”等五個社團(tuán),若每名同學(xué)必須參加且只能參加1個社團(tuán)且每個社團(tuán)至多兩人參加,則這6個人中沒有人參加“演講團(tuán)”的不同參加方法數(shù)為( )
A.3600
B.1080
C.1440
D.2520
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x+2y+1=0,l2:-2x+y+2=0,它們相交于點(diǎn)A.
(1)判斷直線l1和l2是否垂直?請給出理由.
(2)求過點(diǎn)A且與直線l3:3x+y+4=0平行的直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com