10.若α∈(π,2π),則$\sqrt{\frac{1+cosα}{2}}$化簡的結(jié)果為(  )
A.sin$\frac{α}{2}$B.cos$\frac{α}{2}$C.-sin$\frac{α}{2}$D.-cos$\frac{α}{2}$

分析 利用二倍角公式得$\sqrt{\frac{1+cosα}{2}}$=|cos$\frac{α}{2}$|,根據(jù)α的范圍得出$\frac{α}{2}$的范圍,判斷cos$\frac{α}{2}$的符號得出答案.

解答 解:∵cos2$\frac{α}{2}$=$\frac{1+cosα}{2}$,∴$\sqrt{\frac{1+cosα}{2}}$=|cos$\frac{α}{2}$|,
∵α∈(π,2π),∴$\frac{α}{2}$∈($\frac{π}{2}$,π),∴cos$\frac{α}{2}$<0,
∴$\sqrt{\frac{1+cosα}{2}}$=-cos$\frac{α}{2}$.
故選:D.

點(diǎn)評 本題考查了三角函數(shù)的化簡,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.長方體中,AB=BC=4,CC1=2,求
(1)A到平面B1D1DB的距離;
(2)A1B1到平面ABC1D1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.用三角函數(shù)線比較sinl與cosl的大小,結(jié)果是sinl>cosl.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下列函數(shù)的定義域.
(1)f(x)=$\frac{1+tanx}{sinx}$;
(2)f(x)=$\sqrt{cosx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求數(shù)列1$\frac{1}{2}$,3$\frac{3}{4}$,5$\frac{7}{8}$,7$\frac{15}{16}$,…的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)的定義域?yàn)镽,當(dāng)x>0時(shí),f(x)=log2x,若g(x)=xf(x)為偶函數(shù),則f(-$\frac{1}{2}$)=(  )
A.0B.-1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積是πab,利用這一結(jié)論求${∫}_{0}^{\frac{\sqrt{2}}{2}}$$\sqrt{1-2{x}^{2}}$dx等于( 。
A.$\frac{π}{4}$B.$\frac{\sqrt{2}π}{8}$C.$\frac{\sqrt{2}π}{4}$D.$\frac{\sqrt{2}π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知在△ABC中,角A,B,C所對的邊分別為a,b,c,若$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3\sqrt{3}}{2}$,$\sqrt{3}$bsinA=acosB,a+c=4.
(1)求a,c.
(2)求角B的平分線BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.平行四邊形ABCD中,DF=$\frac{1}{3}$DC,AF交BD于E,證明:DE=$\frac{1}{4}$DB.

查看答案和解析>>

同步練習(xí)冊答案