已知點直線與曲線

(1)1.2
(2)

解析試題分析:解(1)曲線C:的一般方程為:
直線的參數(shù)方程為:把直線方程代入曲線C:,得:設(shè)是方程的兩根,則= 6分
 =.  12分
考點:直線與圓的位置關(guān)系
點評:主要是考查了直線與圓的位置關(guān)系的運用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動點P,Q都在曲線C: (t為參數(shù))上,對應(yīng)參數(shù)分別為t=與t=2 (0<<2π),M為PQ的中點.
(1)求M的軌跡的參數(shù)方程;
(2)將M到坐標(biāo)原點的距離d表示為的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l過點P(2,0),斜率為直線l和拋物線y2=2x相交于A、B兩點,設(shè)線段AB的中點為M,求:(1)|PM|; (2)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以原點為極點,以軸正半軸為極軸.已知直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于兩點,求弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),0 ≤ α < π).以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρcos2θ = 4sinθ.
(1)求直線l與曲線C的平面直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于不同的兩點A、B,若,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知x、y滿足,求的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線C的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:是參數(shù)).
(1)將曲線C的極坐標(biāo)方程和直線參數(shù)方程轉(zhuǎn)化為普通方程;
(2)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為:(t為參數(shù)),曲線C的極坐標(biāo)方程為:
(1)求曲線C的普通方程;
(2)求直線被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知x與y之間的一組數(shù)據(jù):

x
0
1
2
3
y
1
3
5
7
則y與x的線性回歸方程 必過點(    )
A.(1.5 ,4)   B.(2,2)    C.(1.5 ,0)     D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案