分析 (2)觀察可得${1^3}+{2^3}+{3^3}+…+{n^3}={\frac{{{n^2}(n+1)}}{4}^2}$,
(1)用數(shù)學歸納法證明:①當n=1時,去證明等式成立;②假設當n=k時,等時成立,用上歸納假設后,去證明當n=k+1時,等式也成立即可.
解答 解:(1)根據(jù)上述規(guī)律,寫出第n個等式;${1^3}+{2^3}+{3^3}+…+{n^3}={\frac{{{n^2}(n+1)}}{4}^2}$或13+23+33+…+n3=(1+2+3+…+n)2
(2)證明如下,①當n=1時,左邊=1,右邊=$\frac{1}{4}$(1+1)2=1,
∴等式成立,
②假設當n=k時,等時成立,即13+23+33+…+k3=$\frac{1}{4}$k2(k+1)2.
那么,當n=k+1時,有13+23+33+…+k3+(k+1)3=$\frac{1}{4}$k2(k+1)2+(k+1)3,
=(k+1)2•($\frac{{k}^{2}}{4}$+k+1)
=(k+1)2•$\frac{{k}^{2}+4k+4}{4}$
=$\frac{(k+1)^{2}(k+2)^{2}}{4}$
═$\frac{1}{4}$(k+1)2(k+1+1)2.
這就是說,當n=k+1時,等式也成立,
根據(jù)①②,可知對n∈N*等式成立.
點評 本題考查數(shù)學歸納法證明有關(guān)正整數(shù)命題的方法步驟,特別是②是關(guān)鍵,是核心,也是數(shù)學歸納法證明命題的難點所在,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | i | B. | -i | C. | -25i | D. | 25i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (log2x)′=$\frac{1}{xln2}$ | B. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | ||
C. | (cosx)′=sinx | D. | ($\frac{{e}^{x}}{x}$)′=$\frac{x{e}^{x}+{e}^{x}}{{x}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 20 | B. | 30 | C. | 50 | D. | 600 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com