5.已知函數(shù)f(x)定義在R上的奇函數(shù),當x<0時,f(x)=ex(x+1),給出下列命題:
①當x>0時,f(x)=ex(1-x);
②函數(shù)f(x)有2個零點;
③f(x)>0的解集為(-1,0)∪(1,+∞)
其中正確命題的個數(shù)是( 。
A.0B.1C.2D.3

分析 根據(jù)f(x)為奇函數(shù),可設(shè)x>0,從而有-x<0,從而可求出f(x)=e-x(x-1),從而可看出-1,1,0都是f(x)的零點,這便得出①②錯誤,而由f(x)解析式便可解出f(x)>0的解集,從而判斷出③的正誤.

解答 解:①f(x)為R上的奇函數(shù),設(shè)x>0,-x<0,則:f(-x)=e-x(-x+1)=-f(x);
∴f(x)=e-x(x-1);
∴該命題錯誤;
②∵f(-1)=0,f(1)=0;
又f(0)=0;
∴f(x)有3個零點;
∴該命題錯誤;
③(1)x<0時,f(x)=ex(x+1);
∴-1<x<0時,f(x)>0;
(2)x>0時,f(x)=e-x(x-1);
∴x>1時,f(x)>0;
∴f(x)>0的解集為(-1,0)∪(1,+∞);
∴該命題正確;
∴正確的命題為③.
故選:B.

點評 本題考查函數(shù)的解析式的求法,函數(shù)的零點的求法函數(shù)的導(dǎo)數(shù)求解函數(shù)的最值,不等式的解法,考查基本知識的綜合應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(2)令g(x)=f(x)-x2,是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;
(3)求證:當x∈(0,e]時,e2x2-$\frac{5}{2}$x>(x+1)lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某城市缺水問題比較突出,為了制定節(jié)水管理辦法,對全市居民某年的月均用水量進行了抽樣調(diào)查,其中4位居民的月均用水量分別為xi(i=1,2,3,4)(單位:立方米).根據(jù)如圖所示的程序框圖,若知x1,x2,x3,x4分別為1,1.5,1.5,3,則輸出的結(jié)果S為$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,
(1)若$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,求|$\overrightarrow{a}$+$\overrightarrow$|;
(2)若$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角.
(3)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=$\frac{{{x^2}+8}}{x-1}$(x>1)的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=4-x2,g(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當x>0時,g(x)=lnx,則函數(shù)y=f(x)•g(x)的大致圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=ax在區(qū)間[0,2]上的最大值是最小值的2倍,則a的值為( 。
A.2B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$或$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$或$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}為a0,a1,a2,a3,…,an(n∈N),bn=$\sum_{i=0}^{n}$ai=a0+a1+a2+a3+…+an,i∈N.若數(shù)列{an}為等差數(shù)列an=2n(n∈N),則$\sum_{i=1}^{n}$(bi${C}_{n}^{i}$)=(n2+3n)•2n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知p:x≤k,q:$\frac{3}{x+1}$<1,如果¬p是q的充分不必要條件,則實數(shù)k的取值范圍( 。
A.(2,+∞)B.[1,+∞)C.[2,+∞)D.(-∞,-1]

查看答案和解析>>

同步練習(xí)冊答案