12.函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可能是( 。
A.f(x)=x+sinxB.f(x)=$\frac{cosx}{x}$C.f(x)=xcosxD.f(x)=x(x-π)(x-3π)

分析 由題意可得,當(dāng)x趨于正無(wú)窮大時(shí),函數(shù)值趨于正無(wú)窮大,函數(shù)f(x)為奇函數(shù),圖象過(guò)原點(diǎn),且函數(shù)的圖象在直線y=x附近擺動(dòng),結(jié)合所給的選項(xiàng)可得結(jié)論.

解答 解:由函數(shù)的圖象可得,當(dāng)x趨于正無(wú)窮大時(shí),函數(shù)值趨于正無(wú)窮大,
函數(shù)f(x)為奇函數(shù),圖象過(guò)原點(diǎn),且函數(shù)的圖象在直線y=x附近擺動(dòng),
結(jié)合所給的選項(xiàng),
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)的圖象特征,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若tanα=$\frac{24}{7}$,且α是第三象限角,則cosα=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=-11,a5+a9=-2,則當(dāng)Sn取最小值時(shí),n等于7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}的項(xiàng)滿足an+1=$\frac{n}{n+2}$an,而a1=1,通過(guò)計(jì)算a2,a3,猜想an等于( 。
A.$\frac{2}{(n+1)^{2}}$B.$\frac{2}{n(n+1)}$C.$\frac{1}{{2}^{n}-1}$D.$\frac{1}{2n-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.己知函數(shù)f(x)=ax+b,當(dāng)x∈[a1,b1]時(shí),值域?yàn)閇a2,b2];當(dāng)x∈[a2,b2]時(shí),值域?yàn)閇a3,b3],…,當(dāng)x∈[a n-1,b n-1]時(shí),值域?yàn)閇an,bn],其中a,b為常數(shù),a1=0,b1=1.
(1)若a=1,求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若a>0且a≠1,要使數(shù)列{bn}是公比不為1的等比數(shù)列,求b的值;
(3)若a>0,設(shè)數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,求Tn-Sn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知復(fù)數(shù)z=(a2+2a-3)+(a+3)i,其中a∈R,i為虛數(shù)單位.
(1)若復(fù)數(shù)z為純虛數(shù),求實(shí)數(shù)a的值;
(2)若復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知集合M={x|y=$\sqrt{1-\frac{1}{x}}$},N={x|x(x-a)≤0}
(1)若a=2,求M∩N;
(2)若∁UN⊆M,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.對(duì)于數(shù)列{an},若前n項(xiàng)和Sn=2an-3n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.⊙C:(x-4)2+(y-2)2=18上到直線l:x-y+2=0的距離為$\sqrt{2}$的點(diǎn)個(gè)數(shù)有(  )個(gè).
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案