3.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=-11,a5+a9=-2,則當(dāng)Sn取最小值時(shí),n等于7.

分析 由等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出當(dāng)Sn取最小值時(shí)n的值.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,a2=-11,a5+a9=-2,
∴$\left\{\begin{array}{l}{{a}_{1}+d=-11}\\{{a}_{1}+4d+{a}_{1}+8d=-2}\end{array}\right.$,
解得a1=-13,d=2,
∴Sn=-13n+$\frac{n(n-1)}{2}×2$=n2-14n=(n-7)2-49.
∴n=7時(shí),Sn取最小值-49.
故答案為:7.

點(diǎn)評 本題考查等差數(shù)列中當(dāng)Sn取最小值時(shí)n的值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,且$\frac{A_n}{B_n}$=$\frac{6n+54}{n+5}$,則使得$\frac{a_n}{b_n}$為整數(shù)的正整數(shù)n的個(gè)數(shù)是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知命題p:|x-1|<2和命題q:-1<x<m+1,若p是q的充分不必要條件,則實(shí)數(shù)m的取值范圍(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)集合A={(x1,x2,x3,x4,x5)|xi∈{-1,0,1},i=1,2,3,4,5},則集合A中滿足條件
“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”元素個(gè)數(shù)為130.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)滿足f(x+1)=lg(2+x)-lg(-x).
(1)求函數(shù)f(x)的解析式及定義域;
(2)解不等式f(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(1,1),B(2,0),|$\overrightarrow{OC}$|=1.
(1)求$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角;
(2)若$\overrightarrow{OC}$與$\overrightarrow{OA}$垂直,求點(diǎn)C的坐標(biāo);
(3)求|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a$•($\overrightarrow b$+$\overrightarrow a$)=2,且|${\overrightarrow a}$|=1,|${\overrightarrow b}$|=2,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{5}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可能是(  )
A.f(x)=x+sinxB.f(x)=$\frac{cosx}{x}$C.f(x)=xcosxD.f(x)=x(x-π)(x-3π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(普通中學(xué)做)已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)P(0,2),離心率e=$\frac{\sqrt{6}}{3}$.
(1)求橢圓C的方程;
(2)試問是否存在直線l:y=kx-$\frac{4}{3}$與橢圓C相交于不同的兩點(diǎn)M,N,且|PM|=|PN|?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案