A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 (幾何法)
設(shè)AA1=$\sqrt{2}$,AB=1,取A1C1的中點(diǎn)E,連結(jié)B1E,AE,則B1E∥BD,∠AB1E是異面直線AB1與BD所成的角(或所成角的補(bǔ)角),由此利用余弦定理能求出異面直線AB1與BD所成的角.
(向量法)
設(shè)AA1=$\sqrt{2}$,AB=1,以A為原點(diǎn),過A在平面ABC內(nèi)作AC的垂線為x軸,以AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線AB1與BD所成的角.
解答 解:(幾何法)
∵在正棱柱ABC-A1B1C1中,D是AC的中點(diǎn),AA1:AB=$\sqrt{2}$:1,
∴設(shè)AA1=$\sqrt{2}$,AB=1,
取A1C1的中點(diǎn)E,連結(jié)B1E,AE,則B1E∥BD,
∴∠AB1E是異面直線AB1與BD所成的角(或所成角的補(bǔ)角),
B1E=$\sqrt{{1}^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,AB1=$\sqrt{2+1}=\sqrt{3}$,AE=$\sqrt{2+\frac{1}{4}}$=$\frac{3}{2}$,
∴cos∠AB1E=$\frac{A{{B}_{1}}^{2}+{B}_{1}{E}^{2}-A{E}^{2}}{2A{B}_{1}•{B}_{1}E}$=$\frac{3+\frac{3}{4}-\frac{9}{4}}{2•\sqrt{3}•\frac{\sqrt{3}}{2}}$=$\frac{1}{2}$,
∴∠AB1E=60°,
∴異面直線AB1與BD所成的角為60°.
故選:C.
(向量法)
∵在正棱柱ABC-A1B1C1中,D是AC的中點(diǎn),AA1:AB=$\sqrt{2}$:1,
∴設(shè)AA1=$\sqrt{2}$,AB=1,
以A為原點(diǎn),過A在平面ABC內(nèi)作AC的垂線為x軸,以AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,
A(0,0,0),B1($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$\sqrt{2}$),B($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,0),D(0,$\frac{1}{2}$,0),
$\overrightarrow{A{B}_{1}}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$\sqrt{2}$),$\overrightarrow{BD}$=(-$\frac{\sqrt{3}}{2}$,0,0),
設(shè)異面直線AB1與BD所成的角為θ,
則cosθ=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{BD}|}{|\overrightarrow{A{B}_{1}}|•|\overrightarrow{BD}|}$=$\frac{\frac{3}{4}}{\sqrt{3}•\frac{\sqrt{3}}{2}}$=$\frac{1}{2}$,
∴θ=60°,
∴異面直線AB1與BD所成的角為60°.
故選:C.
點(diǎn)評 本題考查異面直線所成角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | $\frac{24}{5}$ | D. | $\frac{36}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{10}{3}$<λ≤$\frac{9}{4}$ | B. | $-\frac{10}{3}$<λ<$\frac{9}{4}$ | C. | $-\frac{9}{4}$<λ≤$\frac{10}{3}$ | D. | $-\frac{9}{4}$<λ<$\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{4}$,0) | B. | ($-\frac{1}{2}$,-$\frac{1}{4}$) | C. | ($-\frac{1}{2}$,$-\frac{1}{4}$)∪($-\frac{1}{4}$,-$\frac{1}{8}$) | D. | (-$\frac{1}{2}$,$-\frac{1}{8}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com