分析 (1)由ABCD為矩形,得BC⊥AB有PA⊥平面ABCD可知BC⊥平面PAB,從而AE⊥BC,可證AE⊥PC,由AF⊥PC,AE∩AF=A,從而證明PC⊥面AEF;
(2)由ABCD為矩形,可證CD⊥平面PAD,得CD⊥AG,可知PC⊥AG,從而AG⊥平面PCD,可證AG⊥PD.
解答 解:(1)∵ABCD為矩形
∴BC⊥AB
∵PA⊥平面ABCD
∴BC⊥PA
∴BC⊥平面PAB
∴AE⊥BC
又AE⊥PB
∴AE⊥平面PBC
∴AE⊥PC
又AF⊥PC,AE∩AF=A,
∴PC⊥平面AEF;
(2)∵ABCD為矩形
∴CD⊥AD
∵PA⊥平面ABCD
∴CD⊥PA
∴CD⊥平面PAD
∴CD⊥AG
∵PC⊥平面AEF
∴PC⊥AG
∴AG⊥平面PCD
∴AG⊥PD
點評 本題主要考查了直線與平面垂直的性質(zhì),直線與平面垂直的判定,屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{{\sqrt{3}}}{12}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 02 | B. | 13 | C. | 42 | D. | 44 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m=-$\sqrt{3}$,n=-2 | B. | m=$\sqrt{3}$,n=2 | C. | m=$\sqrt{3}$,n=-2 | D. | m=-$\sqrt{3}$,n=2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com