16.在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為CC1和BB1的中點(diǎn),則異面直線AE與D1F所成角的余弦值為( 。
A.0B.$\frac{{\sqrt{3}}}{12}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{9}$

分析 以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AE與D1F所成角的余弦值.

解答 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD-A1B1C1D1中棱長(zhǎng)為2,
則A(2,0,0),E(0,2,1),D1(0,0,2),F(xiàn)(2,2,1),
$\overrightarrow{AE}$=(-2,2,1),$\overrightarrow{{D}_{1}F}$=(2,2,-1),
設(shè)直線AE與D1F所成角為θ,
則cosθ=|$\frac{-4+4-1}{\sqrt{4+4+1}•\sqrt{4+4+1}}$|=$\frac{1}{9}$.
∴直線AE與D1F所成角的余弦值為$\frac{1}{9}$.
故選D.

點(diǎn)評(píng) 本題考查兩異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.集合A={x|x≤a},B={1,2},A∩B=∅,則a的取值范圍為( 。
A.(-∞,1)B.(1,+∞)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知a>0且a≠1,如圖所示的程序框圖的輸出值y∈[4,+∞),則實(shí)數(shù)a的取值范圍是( 。
A.(1,2]B.($\frac{1}{2}$,1)C.(1,2)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.不等式2x2-x-3>0的解集為{x|x<-1或x>$\frac{3}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若六棱柱ABCDEF-A1B1C1D1E1F1的底面是邊長(zhǎng)為1的正六邊形,側(cè)棱AA1⊥底面ABCDEF,且$A{A_1}=\sqrt{6}$,則異面直線EF與BD1所成的角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.S=$\frac{1}{1×3}+\frac{1}{2×4}+\frac{1}{3×5}+…+\frac{1}{20×22}$=$\frac{325}{462}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{1}{2}$x-sinx,則f(x)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,PA⊥平面ABCD,底面ABCD為矩形,AE⊥PB于E,AF⊥PC于F
(1)求證:PC⊥面AEF;
(2)設(shè)平面AEF交PD于G,求證:AG⊥PD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖所示正方形O'A'B'C'的邊長(zhǎng)為2cm,它是一個(gè)水平放置的一個(gè)平面圖形的直觀圖,則原圖形的周長(zhǎng)是16cm,面積是$8\sqrt{2}c{m^2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案