18.已知△ABC內(nèi)角A,B,C的對(duì)邊分別為a,b,c,B=60°,b2=ac,則A=( 。
A.30°B.45°C.60°D.90°

分析 利用余弦定理、等邊三角形的判定方法即可得出.

解答 解:由余弦定理可得:b2=a2+c2-2accosB=a2+c2-ac=ac,
化為(a-c)2=0,解得a=c.
又B=60°,
∴△ABC是等邊三角形,
∴A=60°.
故選:C.

點(diǎn)評(píng) 本題考查了余弦定理、等邊三角形的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(x,1,2),$\overrightarrow$=(1,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)與($\overrightarrow$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.下表提供了某新生嬰兒成長過程中時(shí)間x(月)與相應(yīng)的體重y(公斤)的幾組對(duì)照數(shù)據(jù)
(1)如y與x具有較好的線性關(guān)系,請(qǐng)根據(jù)表中提供的數(shù)據(jù),求出線性回歸方程:$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)由此推測當(dāng)嬰兒生長滿五個(gè)月時(shí)的體重為多少?
(參考公式和數(shù)據(jù):$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•{\overline{x}}^{2}}$  $\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$,$\sum_{i=1}^{n}{x}_{i}{y}_{i}=27.5$)
 x0123
 y33.54.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sinωx,其中常數(shù)ω>0.
(Ⅰ)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上單調(diào)遞增,求ω的取值范圍;
(Ⅱ)令ω=2,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象求y=g(x)的圖象離原點(diǎn)O最近的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對(duì)任意n∈N*均有$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n}}{_{n}}$=an+1成立,求c1+c2+c3+…+c2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn=2n-3n,則a6+a7+a8=215.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知p:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1”表示雙曲線;q:“關(guān)于x的方程x2-mx+1=0沒有實(shí)數(shù)根”.
若“¬p”和“p∨q”都是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線E:y=mx2(m>0),圓C:x2+(y-2)2=4,點(diǎn)F是拋物線E的焦點(diǎn),點(diǎn)N(x0,y0)(x0>0,y0>0)為拋物線E上的動(dòng)點(diǎn),點(diǎn)M(2,-$\frac{1}{2}$),線段MF恰被拋物線E平分.
(1)求m的值;
(2)若y0>4,過點(diǎn)N向圓C作切線,求兩條切線與x軸圍成的三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.關(guān)于x的方程x2-(2a+l)x+a2=0有實(shí)數(shù)根的一個(gè)充分不必要條件是( 。
A.a>1B.a>-2C.a≥-$\frac{1}{4}$D.a≥-4

查看答案和解析>>

同步練習(xí)冊(cè)答案