按照程序框圖執(zhí)行,第三個(gè)輸出的數(shù)是( 。
A、7B、6C、5D、4
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:執(zhí)行程序框圖,依次寫出每次循環(huán)得到的S,A的值,當(dāng)S=6時(shí),不滿足條件S≤5,結(jié)束.可得第3個(gè)輸出的數(shù)是5.
解答: 解:執(zhí)行程序框圖,有
A=1,S=1
輸出1,
S=2,滿足條件S≤5,A=3,輸出3,
S=3,滿足條件S≤5,A=5,輸出5,
S=4,滿足條件S≤5,A=7,輸出7,
S=5,滿足條件S≤5,A=9,輸出9,
S=6,不滿足條件S≤5,結(jié)束.
故第3個(gè)輸出的數(shù)是5,
故選:C.
點(diǎn)評(píng):本題主要考察了程序框圖和算法,正確理解循環(huán)結(jié)構(gòu)的功能是解題的關(guān)鍵,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的零點(diǎn)與g(x)=4x+2x-2的零點(diǎn)之差的絕對(duì)值不超過0.25,則f(x)可以是( 。
A、f(x)=ex-1
B、f(x)=(x-1)2
C、f(x)=4x-1
D、f(x)=ln(x-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定兩個(gè)命題:p:對(duì)任意實(shí)數(shù)x都有ax2+ax+1>0恒成立;q:關(guān)于x的方程x2-x+a=0有實(shí)數(shù)根,如果p和q中至少有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

林業(yè)管理部門為了保證樹苗的質(zhì)量,在植物節(jié)前對(duì)所購進(jìn)的樹苗進(jìn)行檢測(cè),現(xiàn)從甲、乙兩種樹苗中各抽測(cè)了10株樹苗的高度,它們的高度用莖葉圖表示如下(單位:厘米).若甲、乙兩種樹苗的平均高度分別是x,x,則下列結(jié)論正確的是( 。
A、x>x,甲種樹苗比乙種樹苗高度更整齊
B、x>x,乙種樹苗比甲種樹苗高度更整齊
C、x<x,甲種樹苗比乙種樹苗高度更整齊
D、x<x,乙種樹苗比甲種樹苗高度更整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在曲線C1:
x=1+cosθ
y=-3+sinθ
(θ為參數(shù))上運(yùn)動(dòng),以坐標(biāo)原點(diǎn)為極點(diǎn),x的正半軸為極軸建立極坐標(biāo)系,直線L的極坐標(biāo)方程為ρcos(θ+
π
4
)=
2
,點(diǎn)Q在L上運(yùn)動(dòng),則|PQ|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
2m-x
2+x
(a>0,且a≠1)為奇函數(shù),且f(1)=-1.
(1)求實(shí)數(shù)a與m的值;
(2)用定義證明函數(shù)f(x)的單調(diào)性;
(3)解不等式f(
1
2x
)+1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,求圓ρ=2cosθ的圓心到直線2ρsin(θ+
π
3
)=1
的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,從a1,a2,a3,a4,a5,a6,a7中取走任意四項(xiàng),則剩下三項(xiàng)構(gòu)成等差數(shù)列的概率為( 。
A、
6
35
B、
9
35
C、1或
9
35
D、1或
6
35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在[0,+∞)上為增函數(shù),若關(guān)于x的方程f(b)=f(|2x-1|)有且只有一個(gè)實(shí)根,則實(shí)數(shù)b的取值范圍是( 。
A、b≥2
B、b≥0
C、b≤-1或b=0
D、b≥1或b≤-1或b=0

查看答案和解析>>

同步練習(xí)冊(cè)答案