9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,(x≥0)}\\{{x}^{2}-4x,(x<0)}\\{\;}\end{array}\right.$,若f(2-a)>f(2a),求a的取值范圍為(-2,$\frac{2}{3}$).

分析 作出函數(shù)f(x)的圖象,判斷函數(shù)的奇偶性和單調(diào)性,將不等式進(jìn)行轉(zhuǎn)化進(jìn)行求解即可.

解答 解:作出函數(shù)f(x)的圖象,則函數(shù)f(x)關(guān)于y軸對稱,則函數(shù)f(x)是偶函數(shù),且在[0,+∞)上為增函數(shù),
則不等式f(2-a)>f(2a),等價(jià)為f(|2-a|)>f(|2a|)
即|2-a|>|2a|,
平方得4-4a+a2>4a2,
即3a2+4a-4<0,
得$-2<a<\frac{2}{3}$,
故答案為:(-2,$\frac{2}{3}$)

點(diǎn)評 本題主要考查不等式的求解,根據(jù)分段函數(shù)的表達(dá)式作出函數(shù)的圖象判斷函數(shù)的奇偶性和單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求tan(-690°)sin(-1050°)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x、y滿足$\sqrt{x+3y}$$•\sqrt{x-3y}$=3,則x-|y|的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$a={(\frac{1}{5})^{-\frac{1}{2}}},b={log_5}\frac{1}{3},c={log_{\frac{1}{2}}}\frac{1}{3}$,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.c>a>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=m-|2x+1|-|2x-3|在R上存在零點(diǎn).
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m為最小值時(shí),若$\frac{1}{m\sqrt{a}}$+$\frac{1}{2m\sqrt}$+$\frac{1}{3m\sqrt{c}}$=1,求證:$\frac{1}{9}$$\sqrt{a}$+$\frac{2}{9}$$\sqrt$+$\frac{1}{3}$$\sqrt{c}$≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x|x-a|,若對任意x1∈[2,3],x2∈[2,3],x1≠x2恒有$f(\frac{{{x_1}+{x_2}}}{2})>\frac{{f({x_1})+f({x_2})}}{2}$,則實(shí)數(shù)a的取值范圍為[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)M為平面上以A(4,1),B(-1,-6),C(-3,2)三點(diǎn)為頂點(diǎn)的三角形區(qū)域(包括內(nèi)部和邊界),當(dāng)點(diǎn)(x,y)在M上變化時(shí),z=4x-3y的取值范圍是(  )
A.[-18,13]B.[0,14]C.[13,14]D.[-18,14]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=a•($\frac{1}{3}$)x+bx2+cx(a∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,則實(shí)數(shù)c的取值范圍為[0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中在$(\frac{π}{4},\frac{3}{4}π)$上為減函數(shù)的是( 。
A.y=2cos2x-1B.y=-tanxC.$y=cos(2x-\frac{π}{2})$D.y=sin2x+cos2x

查看答案和解析>>

同步練習(xí)冊答案