(2007•深圳二模)在f(x)中,a、b、c分別是∠A、∠B、∠C的對邊,且b2+c2+
3
bc=a2
,則∠A等于( 。
分析:由已知可得可得 b2+c2-a2=-
3
bc
,由余弦定理可得 b2+c2-a2=2bc•cosA,解得cosA 的值,即可得到三角形的內(nèi)角A 的值.
解答:解:根據(jù)b2+c2+
3
bc=a2
,可得 b2+c2-a2=-
3
bc

由余弦定理可得 b2+c2-a2=2bc•cosA,∴cosA=-
3
2
,
故三角形的內(nèi)角A=150°,
故選D.
點評:本題主要考查余弦定理的應(yīng)用,求出cosA=-
3
2
,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)如圖,已知命題:若矩形ABCD的對角線BD與邊AB和BC所成角分別為α,β,則cos2α+cos2β=1,若把它推廣到長方體ABCD-A1B1C1D1中,試寫出相應(yīng)命題形式:
長方體ABCD-A1B1C1D1中,對角線BD1與棱AB、BB1、BC所成的角分別為α、β、γ,則cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.
長方體ABCD-A1B1C1D1中,對角線BD1與棱AB、BB1、BC所成的角分別為α、β、γ,則cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)已知集合M={-1,0},則滿足M∪N={-1,0,1}的集合N的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)已知雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線互相垂直,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)把正奇數(shù)數(shù)列{2n-1}的各項從小到大依次排成如下三角形狀數(shù)表記M(s,t)表示該表中第s行的第t個數(shù),則表中的奇數(shù)2007對應(yīng)于.( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生500人,現(xiàn)用分層抽樣的方法在這三個年級中抽取120人進行體能測試,則從高三抽取的人數(shù)應(yīng)為( 。

查看答案和解析>>

同步練習(xí)冊答案