在數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210957779481.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210957795371.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210957904609.png)
.
(Ⅰ)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210957920646.png)
.證明:數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210957935491.png)
是等差數(shù)列;
(Ⅱ)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210957779481.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210957982277.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210957998388.png)
.
(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210957904609.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210958045729.png)
,
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210958060541.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210958091365.png)
為等差數(shù)列,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210958107389.png)
,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210958169470.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210958185583.png)
.
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232109582941170.png)
兩式相減,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232109583101085.png)
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212106927481.png)
是等差數(shù)列,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212106943491.png)
是公比為正整數(shù)的等比數(shù)列,已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212106958942.png)
,
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212106927481.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212106943491.png)
的通項公式(5分)
(2)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212107005681.png)
的前n項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212107036388.png)
(5分)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211520622480.png)
的前n項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115206381432.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211520653344.png)
=2.
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211520669315.png)
的值,并證明:當n>2時有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211520700738.png)
;
(2)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211520716584.png)
…
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211520731514.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223265481.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223297297.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223499388.png)
,且對任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223687503.png)
,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223718464.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223733871.png)
.
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223765315.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223796344.png)
的值;
(2)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223265481.png)
的通項公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211223999348.png)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
對于數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232111379631051.png)
,定義“
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211137978303.png)
變換”:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211137978303.png)
將數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138134300.png)
變換成數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138150620.png)
,其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138166826.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138197569.png)
.這種“
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211137978303.png)
變換”記作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138353579.png)
.繼續(xù)對數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138353309.png)
進行“
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211137978303.png)
變換”,得到數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138384561.png)
,依此類推,當?shù)玫降臄?shù)列各項均為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138415262.png)
時變換結(jié)束.
(Ⅰ)試問
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138556557.png)
經(jīng)過不斷的“
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211137978303.png)
變換”能否結(jié)束?若能,請依次寫出經(jīng)過“
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211137978303.png)
變換”得到的各數(shù)列;若不能,說明理由;
(Ⅱ)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138618586.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138353579.png)
.若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138649737.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138353309.png)
的各項之和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138680429.png)
.
(。┣
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138696278.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138712299.png)
;
(ⅱ)若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138353309.png)
再經(jīng)過
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138758313.png)
次“
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211137978303.png)
變換”得到的數(shù)列各項之和最小,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211138758313.png)
的最小值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210818641476.png)
是集合
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232108186571061.png)
中的數(shù)從小到大排列而成,即a
1=3,a
2=5,a
3=6,a
4=9,a
5=10,…,F(xiàn)將各數(shù)按照上小下大、左小右大的原則排成如下三角形表:
1、.寫出這個三角形的第四行和第五行的數(shù);
2、求a
100;
3、設(shè){
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210818673365.png)
}是集合
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232108186881380.png)
中的數(shù)從小到大排列而成,已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210818704367.png)
=1160,求k的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210818719920.png)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210926314456.png)
不是常數(shù)列,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210926392371.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210926408493.png)
構(gòu)成等比數(shù)列.
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210926423348.png)
;
(2)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210926439624.png)
前n項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210926455388.png)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210554700348.png)
}為等差數(shù)列,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210554715388.png)
是數(shù)列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210554700348.png)
}的前n項和,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210554762661.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210554778581.png)
的值為
查看答案和解析>>