【題目】在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.

【答案】

【解析】

根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設(shè)出的長,

即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.

如圖所示:

過點,垂足為,過點于點,連接.

為二面角的平面角的補角,即有.

∵易證,,而三角形為等邊三角形, 的中點.

設(shè), .

.

故三棱錐的體積為

當且僅當時,,即.

三點共線.

設(shè)三棱錐的外接球的球心為,半徑為.

過點,∴四邊形為矩形.

,,,

,,解得.

三棱錐的外接球的表面積為.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖兩個同心球,球心均為點,其中大球與小球的表面積之比為3:1,線段是夾在兩個球體之間的內(nèi)弦,其中兩點在小球上,兩點在大球上,兩內(nèi)弦均不穿過小球內(nèi)部.當四面體的體積達到最大值時,此時異面直線的夾角為,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,,底面ABCD是邊長為2的菱形,點EF分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.

求證:(1)直線平面EFG;

2)直線平面SDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的焦點為.

若點為拋物線上異于原點的任一點,過點作拋物線的切線交軸于點,證明:.

,是拋物線上兩點,線段的垂直平分線交軸于點 (不與軸平行),且.過軸上一點作直線軸,且被以為直徑的圓截得的弦長為定值,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:

1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;

2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設(shè)其中至少有1件是標準長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標準長度的概率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)滿足,的虛部為2,

1)求復(fù)數(shù)

2)設(shè)在復(fù)平面上對應(yīng)點分別為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的兩頂點分別為,為雙曲線的一個焦點,為虛軸的一個端點,若在線段上(不含端點)存在兩點,使得,則雙曲線的漸近線斜率的平方的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著時代的發(fā)展和社會的進步,農(nóng)村淘寶發(fā)展十分迅速,促進農(nóng)產(chǎn)品進城消費品下鄉(xiāng).農(nóng)產(chǎn)品進城很好地解決了農(nóng)產(chǎn)品與市場的對接問題,使農(nóng)民收入逐步提高,生活水平得到改善,農(nóng)村從事網(wǎng)店經(jīng)營的人收入逐步提高.西鳳臍橙是四川省南充市的特產(chǎn),因果實呈橢圓形、色澤橙紅、果面光滑、無核、果肉脆嫩化渣、汁多味濃,深受人們的喜愛.為此小王開網(wǎng)店銷售西鳳臍橙,每月月初購進西鳳臍橙,每售出1噸西鳳臍橙獲利潤800元,未售出的西鳳臍橙,每1噸虧損500.經(jīng)市場調(diào)研,根據(jù)以往的銷售統(tǒng)計,得到一個月內(nèi)西鳳臍橙市場的需求量的頻率分布直方圖如圖所示.小王為下一個月購進了100噸西鳳臍橙,以x(單位:噸)表示下一個月內(nèi)市場的需求量,y(單位:元)表示下一個月內(nèi)經(jīng)銷西鳳臍橙的銷售利潤.

1)將y表示為x的函數(shù);

2)根據(jù)頻率分布直方圖估計小王的網(wǎng)店下一個月銷售利潤y不少于67000元的概率;

3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率,(例如:若需求量,則取,且的概率等于需求量落入的頻率),求小王的網(wǎng)店下一個月銷售利潤y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案