分析 由題意可得$\frac{5π}{6}$≤ωx+$\frac{5π}{6}$≤ωπ+$\frac{5π}{6}$,2sin(ωx+$\frac{5π}{6}$)∈[0,2],可得ωπ+$\frac{5π}{6}$≥2π+$\frac{π}{2}$,由此求得ω的范圍.
解答 解:由題意得,D=[0,π],f(x)=2sin(ωx+$\frac{5π}{6}$)(ω>0)的定義域?yàn)镈,
∵f-1([0,2])={x|f(x)∈[0,2],x∈R},故2sin(ωx+$\frac{5π}{6}$)∈[0,2].
∵ω>0,x∈[0,π],∴$\frac{5π}{6}$≤ωx+$\frac{5π}{6}$≤ωπ+$\frac{5π}{6}$,
∴由2sin(ωx+$\frac{5π}{6}$)∈[0,2],可得ωπ+$\frac{5π}{6}$≥2π+$\frac{π}{2}$,∴ω≥$\frac{5}{3}$,
故答案為:[$\frac{5}{3}$,+∞).
點(diǎn)評 本題考查了對應(yīng)關(guān)系的應(yīng)用,以及函數(shù)的定義域與值域的關(guān)系的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $±\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $±\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -10 | B. | -22 | C. | -24 | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com