【題目】已知橢圓的左、右焦點(diǎn)為,,長(zhǎng)軸端點(diǎn)為,,為橢圓中心,,斜率為的直線與橢圓交于不同的兩點(diǎn),這兩點(diǎn)在軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn).
(1)求橢圓的方程;
(2)若拋物線上存在兩個(gè)點(diǎn),,橢圓上存在兩個(gè)點(diǎn),,滿足,,三點(diǎn)共線,,,三點(diǎn)共線,且,求四邊形面積的最小值.
【答案】(1)(2)
【解析】
(1)由,可得,由于斜率為的直線與橢圓交于不同的兩點(diǎn),這兩點(diǎn)在軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),可知直線過(guò)原點(diǎn),表示出直線方程,可得直線與橢圓的一個(gè)交點(diǎn)坐標(biāo),代入橢圓中,可得到,的值,由此得到橢圓的方程。
(2)分類討論直線斜率存在與不存在的情況,當(dāng)斜率不存在時(shí),根據(jù)題意可得,,即可得到四邊形的面積,當(dāng)斜率存在時(shí),設(shè)出直線的點(diǎn)斜式方程以及直線的方程,將直線的方程與拋物線聯(lián)立方程,得到關(guān)于的一元二次方程,由弦長(zhǎng)公式表示出,再聯(lián)立直線與橢圓的方程,得出的長(zhǎng),最后表示出四邊形面積關(guān)于斜率的表達(dá)式,利用基本不等式即可求出四邊形面積最小值。
解:(1)設(shè)橢圓方程為,
利用數(shù)量積運(yùn)算可得,可得,
直線的方程為,當(dāng)時(shí),,
代入橢圓方程可得,
聯(lián)立解得,,橢圓方程.
(2)①當(dāng)直線的斜率不存在時(shí),直線的斜率為0,得到,,;
②當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,
與拋物線聯(lián)立得。
令,,則,,
,
因?yàn)?/span>,所以直線的方程為,
將直線與橢圓聯(lián)立,得,
令,,則,,
所以,
所以四邊形面積,
令,
則,
所以,其最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F,過(guò)點(diǎn)的直線l與E交于A,B兩點(diǎn).當(dāng)l過(guò)點(diǎn)F時(shí),直線l的斜率為,當(dāng)l的斜率不存在時(shí),.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
如圖,在平面直角坐標(biāo)系xOy中,平行于x軸且過(guò)點(diǎn)A(3,2)的入射光線 l1
被直線l:y=x反射.反射光線l2交y軸于B點(diǎn),圓C過(guò)點(diǎn)A且與l1, l2 都相切.
(1)求l2所在直線的方程和圓C的方程;
(2)設(shè)分別是直線l和圓C上的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是指懸浮在空氣中的空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國(guó)家標(biāo)準(zhǔn),日均值在微克/立方米以下,空氣質(zhì)量為一級(jí);在微克應(yīng)立方米微克立方米之間,空氣質(zhì)量為二級(jí):在微克/立方米以上,空氣質(zhì)量為超標(biāo).從某市年全年每天的監(jiān)測(cè)數(shù)據(jù)中隨機(jī)地抽取天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值頻數(shù)如下表:
日均值 (微克/立方米) | ||||||
頻數(shù)(天) |
(1)從這天的日均值監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽出天,求恰有天空氣質(zhì)量達(dá)到一級(jí)的概率;
(2)從這天的數(shù)據(jù)中任取天數(shù)據(jù),記表示抽到監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)構(gòu)為了了解不同年齡的人對(duì)一款智能家電的評(píng)價(jià),隨機(jī)選取了50名購(gòu)買該家電的消費(fèi)者,讓他們根據(jù)實(shí)際使用體驗(yàn)進(jìn)行評(píng)分.
(Ⅰ)設(shè)消費(fèi)者的年齡為,對(duì)該款智能家電的評(píng)分為.若根據(jù)統(tǒng)計(jì)數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評(píng)分的方差為.求與的相關(guān)系數(shù),并據(jù)此判斷對(duì)該款智能家電的評(píng)分與年齡的相關(guān)性強(qiáng)弱.
(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費(fèi)者的年齡劃分為“青年”和“中老年”,評(píng)分劃分為“好評(píng)”和“差評(píng)”,整理得到如下數(shù)據(jù),請(qǐng)判斷是否有的把握認(rèn)為對(duì)該智能家電的評(píng)價(jià)與年齡有關(guān).
好評(píng) | 差評(píng) | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:線性回歸直線的斜率;相關(guān)系數(shù),獨(dú)立性檢驗(yàn)中的,其中.
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,垂直于以為直徑的圓所在的平面,點(diǎn)是圓周上異于,的任意一點(diǎn),則下列結(jié)論中正確的是( )
①
②
③平面
④平面平面
⑤平面平面
A.①②⑤B.②⑤C.②④⑤D.②③④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下結(jié)論正確的個(gè)數(shù)是( )
①若數(shù)列中的最大項(xiàng)是第項(xiàng),則.
②在中,若,則為等腰直角三角形.
③設(shè)、分別為等差數(shù)列與的前項(xiàng)和,若,則.
④的內(nèi)角、、的對(duì)邊分別為、、,若、、成等比數(shù)列,且,則.
⑤在中,、、分別是、、所對(duì)邊,,則的取值范圍為.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com