【題目】已知函數(shù)f(x)=cosx(sinx-cosx)+m(m∈R),將y=f(x)的圖象向左平移 個單位后得到g(x)的圖象,且y=g(x)在區(qū)間[]內(nèi)的最小值為 .
(1)求m的值;
(2)在銳角△ABC中,若g( )=,求sinA+cosB的取值范圍.
【答案】(1);(2)
【解析】
(1)根據(jù)二倍角公式化簡,利用平移規(guī)律得出的解析式,根據(jù)最小值列方程求出;
(2)根據(jù)條件求出,用表示出,化簡 得出關(guān)于函數(shù),根據(jù)的范圍得出正弦函數(shù)的性質(zhì)得出的范圍.
(1)f(x)=sinxcosx-cos2x+m=sin2x-cos2x+m-=sin(2x-)+m-,
∴g(x)=sin[2(x+)-]+m-=sin(2x+)+m-,
∵x∈[,],∴2x+∈[,],
∴當(dāng)2x+=時,g(x)取得最小值+m-=m,
∴m=.
(2)∵g()=sin(C+)+-=-+,
∴sin(C+)=,
∵C∈(0,),∴C+∈(,),
∴C+=,即C=.
∴sinA+cosB=sinA+cos(-A)
=sinA-cosA+sinA
=sinA-cosA
=sin(A-).
∵△ABC是銳角三角形,∴,
解得,
∴A-∈(,),
∴<sin(A-)<,
∴<sin(A-)<,
∴sinA+cosB的取值范圍是(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象.求y=g(x)在區(qū)間[0,10π]上零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,點M(m, 0)在x軸的正半軸上,過M點的直線與拋物線 C相交于A,B兩點,O為坐標(biāo)原點.
(1) 若m=l,且直線的斜率為1,求以AB為直徑的圓的方程;
(2) 是否存在定點M,使得不論直線繞點M如何轉(zhuǎn)動, 恒為定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2-4x-2y-5=0與圓C2:x2+y2-6x-y-9=0.
(1)求證:兩圓相交;(2)求兩圓公共弦所在的直線方程;
(3)在平面上找一點P,過P點引兩圓的切線并使它們的長都等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左頂點為,過原點且斜率不為0的直線與橢圓交于兩點,其中點在第二象限,過點作軸的垂線交于點.
⑴求橢圓的標(biāo)準(zhǔn)方程;
⑵當(dāng)直線的斜率為時,求的面積;
⑶試比較與大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列中,a1=2,a3+2是a2和a4的等差中項.
(1)求數(shù)列的通項公式;
(2)記=log2,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,以坐標(biāo)原點O為圓心的單位圓與x軸正半軸相交于點A,點B,P在單位圓上,且
(1)求的值;
(2)設(shè) ,四邊形的面積為,,求的最值及此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABNCD,EF∥AB,AB=2,BC=EF=1,AE= ,∠BAD=60°,G為BC的中點.
(1)求證:FG∥平面BED;
(2)求證:平面BED⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的( 。
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com