已知函數(shù)f(x)=
3x2

(1)求f(x)的單調(diào)區(qū)間;
(2)求曲線y=f(x)在點x=1處的切線方程;
(3)求曲線y=f(x),y=|x|所圍成的圖形的面積S.
(1)∵f(x)=
3x2
=x
2
3
,∴f′(x)=
2
3
x-
1
3

解f'(x)>0得x>0,解f'(x)<0得x<0,
∴f(x)的單調(diào)增區(qū)間是(0,+∞),單調(diào)減區(qū)間是(-∞,0)
(注:也可以寫成閉區(qū)間[0,+∞)或(-∞,0])…(4分)
(2)切點坐標(biāo)是(1,1),且f′(1)=
2
3
,
∴y=f(x)在點x=1處的切線方程是y-1=
2
3
(x-1)

化簡得2x-3y+1=0…(9分)
(3)解
3x2
=|x|
得x=±1,0
f(x)=
3x2
的圖象特點得曲線y=f(x),y=|x|所圍成的圖形的面積是:
S=2
10
x
2
3
-x)dx=2(
3
5
x
5
3
-
x2
2
)
|10
=
1
5
.(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)當(dāng)時,求函數(shù)的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)取極小值時,的值是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的極大值是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C:y=
x3
3
-4x+
2
3

(I)求在點M(1,-3)處曲線C的切線方程;
(Ⅱ)若過點N(1,n)作曲線C的切線有三條,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a∈R,f(x)=x3-x2-x+a,曲線y=f(x)與x軸有且只有一個公共點,實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2ex
(1)求f(x)的極值.
(2)求f(x)在區(qū)間[t,0]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x2,則曲線y=f(x)在點(1,f(x))處的切線方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),則在閉區(qū)間上的最小值是(       )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案