1.已知函數(shù)f(x)=$\frac{a}{{x}^{2}}$+21nx,若當(dāng)a>0時(shí),f(x)≥2恒成立,則實(shí)數(shù)a的取值范圍是a≥e.

分析 不等式可整理為a≥2x2(1-lnx)恒成立,只需求出右式的最大值即可,構(gòu)造函數(shù)令h(x)=2x2(1-lnx),求出導(dǎo)函數(shù)h'(x)=2x(1-2lnx),
利用導(dǎo)函數(shù)求出原函數(shù)的最大值即可.

解答 解:若當(dāng)a>0時(shí),f(x)≥2恒成立,
∴a≥2x2(1-lnx)恒成立,
令h(x)=2x2(1-lnx),h'(x)=2x(1-2lnx),
∴當(dāng)x∈(0,${e}^{\frac{1}{2}}$)時(shí),h(x)>0,h(x)遞增,
當(dāng)x∈(${e}^{\frac{1}{2}}$,+∞)時(shí),h(x)<0,h(x)遞減,
∴h(x)的最大值為h(${e}^{\frac{1}{2}}$)=e,
∴a≥e.

點(diǎn)評(píng) 考查了恒成立問題的轉(zhuǎn)化和構(gòu)造函數(shù),利用導(dǎo)函數(shù)判斷函數(shù)最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.有下列命題:
①在函數(shù)y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為π;
②命題:“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對(duì)任意的x∈R,都有sinx≤1,則¬p是:存在x0∈R,使得sinx0>1;
⑤命題“若0<a<1,則loga(a+1)>loga(1+$\frac{1}{a}$)”是真命題;
⑥在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,則角C等于30°或150°.
其中所有真命題的序號(hào)是④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若(1-3x)7展開式的第4項(xiàng)為280,則$\lim_{n→∞}({x+{x^2}+…+{x^n}})$=$-\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知OPQ是半徑為1,圓心角為$\frac{π}{3}$的扇形,C是扇形弧上的動(dòng)點(diǎn),ABCD是扇形的內(nèi)接矩形,記∠COP=α,
(1)求矩形ABCD的面積y關(guān)于角α的函數(shù)關(guān)系式y(tǒng)=f(α);
(2)求y=f(α)的單調(diào)遞增區(qū)間;
(3)問當(dāng)角α取何值時(shí),矩形ABCD的面積最大?并求出這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lg(ax-4)(a是常數(shù)且0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)若f(x)取負(fù)值,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,E為線段AC上的動(dòng)點(diǎn),且$\overrightarrow{AE}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AD}$,則μ-λ的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.
(1)若f(1)≤8,求實(shí)數(shù)a的取值范圍;
(2)設(shè)a=1,對(duì)任意的x1,x2∈(-1,0),關(guān)于m的不等式|$\frac{{x}_{1}}{f({x}_{1})}$-g(x2)|<m恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)H1(x)=max{f(x,g(x)},H2(x)=min{f(x),g(x)},其中max{p,q}表示p,q中的較大者,min{p,q}表示p,q中的較小者;記H1(x)的最小值為A,H2(x)的最大值為B,求A-B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.$\sqrt{3}$tan12°+$\sqrt{3}$tan18°+tan12°•tan18°的值是( 。
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2sin2($\frac{x}{2}$-$\frac{3π}{2}$)+$\sqrt{3}$cos($\frac{π}{2}$+x).
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[0,$\frac{3π}{4}$]時(shí),求f(x)的最大值和最小值及相應(yīng)的x的值;
(3)若α為第二象限角,且f(α-$\frac{π}{3}$)=$\frac{1}{3}$,求$\frac{cos2α}{1+cos2α-sin2α}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案