【題目】已知拋物線,過拋物線上的一點(diǎn),作的兩條切線,與軸分別相交于,兩點(diǎn).

(Ⅰ)若切線過拋物線的焦點(diǎn),求直線斜率;

(Ⅱ)求面積的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】試題分析:

由拋物線的焦點(diǎn)坐標(biāo)設(shè)切線的方程為:.利用圓心到直線的距離等于半徑解方程可得,結(jié)合圖形可知直線斜率.

Ⅱ)設(shè)切線方程為,由點(diǎn)在直線上,則,直線與圓相切,則,據(jù)此可得,則,,而,.,則,,的最小值為.

試題解析:

Ⅰ)拋物線的焦點(diǎn)為,設(shè)切線的斜率為,

則切線的方程為:,即.

,解得:.

,.

Ⅱ)設(shè)切線方程為,由點(diǎn)在直線上得:

圓心到切線的距離,整理得:

將①代入②得:

設(shè)方程的兩個(gè)根分別為,,由韋達(dá)定理得:,,

從而

.

記函數(shù),則,

,的最小值為,當(dāng)取得等號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量y(單位:萬只)與相成年份x(序號)的數(shù)據(jù)表和散點(diǎn)圖(如圖所示),根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場的個(gè)數(shù)z(單位:個(gè))關(guān)于x的回歸方程.

(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線性回歸方程(參考統(tǒng)計(jì)量:);

(2)試估計(jì):①該縣第一年養(yǎng)殖山羊多少萬只?

②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在固定壓力差(壓力差為常數(shù))下,當(dāng)氣體通過圓形管道時(shí),其流量速率,(單位:)與管道半徑r(單位:cm)的四次方成正比.

1)寫出氣體流量速率,關(guān)于管道半徑r的函數(shù)解析式;

2)若氣體在半徑為3cm的管道中,流量速率為,求該氣體通過半徑為r的管道時(shí),其流量速率v的表達(dá)式;

3)已知(2)中的氣體通過的管道半徑為5cm,計(jì)算該氣體的流量速率(精確到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)上的增函數(shù).

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若滿足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn)P是直線上的一動(dòng)點(diǎn),過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B

1)當(dāng)切線PA的長度為時(shí),求點(diǎn)P的坐標(biāo);

2)若的外接圓為圓N,試問:當(dāng)P運(yùn)動(dòng)時(shí),圓N是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,請說明理由;

3)求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切,過點(diǎn)且不垂直于軸直線與橢圓相交于兩點(diǎn)。

1)求橢圓的方程;

2)若點(diǎn)關(guān)于軸的對稱點(diǎn)是點(diǎn),證明:直線軸相交于定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為2的正方形,,且,中點(diǎn).

)求證:平面;  

求二面角的大小;

在線段上是否存在點(diǎn),使得點(diǎn)到平

的距離為?若存在,確定點(diǎn)的位置;

若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱錐中,平面,底面邊長,則正三棱錐的外接球的表面積為________.

查看答案和解析>>

同步練習(xí)冊答案