【題目】已知圓,點(diǎn)P是直線上的一動(dòng)點(diǎn),過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為AB

1)當(dāng)切線PA的長(zhǎng)度為時(shí),求點(diǎn)P的坐標(biāo);

2)若的外接圓為圓N,試問:當(dāng)P運(yùn)動(dòng)時(shí),圓N是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

3)求線段AB長(zhǎng)度的最小值.

【答案】(1);(2)圓過定點(diǎn),;(3)當(dāng)時(shí),AB有最小值

【解析】

1)設(shè),由,計(jì)算即可求得,得出結(jié)果;

2)因?yàn)?/span>A、PM三點(diǎn)的圓NMP為直徑,所以圓的方程為,化簡(jiǎn)為,由方程恒成立可知,即可求得動(dòng)圓所過的定點(diǎn);

3)由圓和圓方程作差可得直線方程,設(shè)點(diǎn)到直線AB的距離,則,計(jì)算化簡(jiǎn)可得結(jié)果.

1)由題可知,圓M的半徑,設(shè),

因?yàn)?/span>PA是圓M的一條切線,所以,

所以,

解得

所以點(diǎn)P的坐標(biāo)為

2)設(shè),因?yàn)?/span>,

所以經(jīng)過A、P、M三點(diǎn)的圓NMP為直徑,

其方程為,

,

,

解得

所以圓過定點(diǎn),

3)因?yàn)閳AN方程為,

又圓

-②得圓M方程與圓N相交弦AB所在直線方程為

點(diǎn)到直線AB的距離,

所以相交弦長(zhǎng)

所以當(dāng)時(shí),AB有最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點(diǎn)處的切線為,也為函數(shù)的圖象的切線,必須滿足

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖點(diǎn)是半徑為的砂輪邊緣上的一個(gè)質(zhì)點(diǎn),它從初始位置,)開始,按逆時(shí)針方向每旋轉(zhuǎn)一周,

1)求點(diǎn)的縱坐標(biāo)關(guān)于時(shí)間的函數(shù)關(guān)系;

2)求點(diǎn)的運(yùn)動(dòng)周期和頻率;

3)函數(shù)的圖像可由余弦曲線經(jīng)過怎樣的變化得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若在定義域內(nèi)有兩個(gè)極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過拋物線上的一點(diǎn),作的兩條切線,與軸分別相交于,兩點(diǎn).

(Ⅰ)若切線過拋物線的焦點(diǎn),求直線斜率;

(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span> ,部分對(duì)應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示.

下列關(guān)于的命題:

①函數(shù)的極大值點(diǎn)為;

②函數(shù)上是減函數(shù);

③如果當(dāng)時(shí),的最大值是,那么的最大值為

④當(dāng)時(shí),函數(shù)個(gè)零點(diǎn);

⑤函數(shù)的零點(diǎn)個(gè)數(shù)可能為、、、、個(gè).

其中正確命題的個(gè)數(shù)是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,直線交圓,兩點(diǎn),過點(diǎn)的平行線交于點(diǎn).

1)證明為定值,并寫出點(diǎn)的軌跡方程;

2)設(shè)點(diǎn)的軌跡為曲線,直線,兩點(diǎn),過點(diǎn)且與直線垂直的直線與圓交于,兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列不等式的解集:

(1);

(2);

(3);

(4);

(5);

(6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對(duì)任意的實(shí)數(shù)都有是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案